Unknown

Dataset Information

0

Early prediction of in-hospital mortality utilizing multivariate predictive modelling of electronic medical records and socio-determinants of health of the first day of hospitalization.


ABSTRACT:

Background

In France an average of 4% of hospitalized patients die during their hospital stay. To aid medical decision making and the attribution of resources, within a few days of admission the identification of patients at high risk of dying in hospital is essential.

Methods

We used de-identified routine patient data available in the first 2 days of hospitalization in a French University Hospital (between 2016 and 2018) to build models predicting in-hospital mortality (at ≥ 2 and ≤ 30 days after admission). We tested nine different machine learning algorithms with repeated 10-fold cross-validation. Models were trained with 283 variables including age, sex, socio-determinants of health, laboratory test results, procedures (Classification of Medical Acts), medications (Anatomical Therapeutic Chemical code), hospital department/unit and home address (urban, rural etc.). The models were evaluated using various performance metrics. The dataset contained 123,729 admissions, of which the outcome for 3542 was all-cause in-hospital mortality and 120,187 admissions (no death reported within 30 days) were controls.

Results

The support vector machine, logistic regression and Xgboost algorithms demonstrated high discrimination with a balanced accuracy of 0.81 (95%CI 0.80-0.82), 0.82 (95%CI 0.80-0.83) and 0.83 (95%CI 0.80-0.83) and AUC of 0.90 (95%CI 0.88-0.91), 0.90 (95%CI 0.89-0.91) and 0.90 (95%CI 0.89-0.91) respectively. The most predictive variables for in-hospital mortality in all three models were older age (greater risk), and admission with a confirmed appointment (reduced risk).

Conclusion

We propose three highly discriminating machine-learning models that could improve clinical and organizational decision making for adult patients at hospital admission.

SUBMITTER: Stoessel D 

PROVIDER: S-EPMC10644472 | biostudies-literature | 2023 Nov

REPOSITORIES: biostudies-literature

altmetric image

Publications

Early prediction of in-hospital mortality utilizing multivariate predictive modelling of electronic medical records and socio-determinants of health of the first day of hospitalization.

Stoessel Daniel D   Fa Rui R   Artemova Svetlana S   von Schenck Ursula U   Nowparast Rostami Hadiseh H   Madiot Pierre-Ephrem PE   Landelle Caroline C   Olive Fréderic F   Foote Alison A   Moreau-Gaudry Alexandre A   Bosson Jean-Luc JL  

BMC medical informatics and decision making 20231113 1


<h4>Background</h4>In France an average of 4% of hospitalized patients die during their hospital stay. To aid medical decision making and the attribution of resources, within a few days of admission the identification of patients at high risk of dying in hospital is essential.<h4>Methods</h4>We used de-identified routine patient data available in the first 2 days of hospitalization in a French University Hospital (between 2016 and 2018) to build models predicting in-hospital mortality (at ≥ 2 an  ...[more]

Similar Datasets

| S-EPMC10086061 | biostudies-literature
| PRJNA158491 | ENA
| S-EPMC11661743 | biostudies-literature
| S-EPMC11446542 | biostudies-literature
| S-EPMC5435874 | biostudies-literature
| S-EPMC11199246 | biostudies-literature
| S-EPMC10790030 | biostudies-literature
| S-EPMC5696335 | biostudies-literature
| S-EPMC4413369 | biostudies-literature
| S-EPMC10701944 | biostudies-literature