Project description:BackgroundThe transactivating response (TAR) element of human immunodeficiency virus type 1 (HIV-1) is the source of two functional microRNAs (miRNAs), miR-TAR-5p and miR-TAR-3p. The objective of this study was to characterize the post-transcriptional regulation of host messenger RNAs (mRNAs) relevant to HIV-1 pathogenesis by HIV-1 TAR miRNAs.ResultsWe demonstrated that TAR miRNAs derived from HIV-1 can incorporate into host effector Argonaute protein complexes, which is required if these miRNAs are to regulate host mRNA expression. Bioinformatic predictions and reporter gene activity assays identified regulatory elements complementary and responsive to miR-TAR-5p and miR-TAR-3p in the 3' untranslated region (UTR) of several candidate genes involved in apoptosis and cell survival. These include Caspase 8, Aiolos, Ikaros and Nucleophosmin (NPM)/B23. Analyses of Jurkat cells that stably expressed HIV-1 TAR or contained a full-length latent HIV provirus suggested that HIV-1 TAR miRNAs could regulate the expression of genes in T cells that affect the balance between apoptosis and cell survival.ConclusionsHIV-1 TAR miRNAs may contribute to the replication cycle and pathogenesis of HIV-1, by regulating host genes involved in the intricate balance between apoptosis and infected cell, to induce conditions that promote HIV-1 propagation and survival.
Project description:Integrated HIV-1 genomes are found within actively transcribed host genes in latently infected CD4(+) T cells. Readthrough transcription of the host gene might therefore suppress HIV-1 gene expression and promote the latent infection that allows viral persistence in patients on therapy. To address the effect of host gene readthrough, we used homologous recombination to insert HIV-1 genomes in either orientation into an identical position within an intron of an actively transcribed host gene, hypoxanthine-guanine phosphoribosyltransferase (HPRT). Constructs were engineered to permit or block readthrough transcription of HPRT. Readthrough transcription inhibited HIV-1 gene expression for convergently orientated provirus but enhanced HIV-1 gene expression when HIV-1 was in the same orientation as the host gene. Orientation had a >10-fold effect on HIV-1 gene expression. Due to the nature of HIV-1 integration sites in vivo, this orientation-dependent regulation can influence the vast majority of infected cells and adds complexity to the maintenance of latency.
Project description:In vivo experiments in animal models of disease are of crucial importance for viral tropism and pathogenesis studies. However, these experiments must be complemented with in vitro and ex vivo experiments. Here, we describe a protocol for the preparation and ex vivo infection of lung slices from different mammalian host species with various respiratory paramyxoviruses expressing fluorescent reporter proteins, and suggest follow-up experiments including immunohistochemistry, flow cytometry and confocal microscopy.
Project description:Eukaryotic gene transcription is regulated at many steps, including RNA polymerase II (Pol II) recruitment, transcription initiation, promoter-proximal Pol II pause release, and transcription termination; however, mechanisms regulating transcription during productive elongation remain poorly understood. Enhancers, which activate gene transcription, themselves undergo Pol II-mediated transcription, but our understanding of enhancer transcription and enhancer RNAs (eRNAs) remains incomplete. Here we show that transcription at intragenic enhancers interferes with and attenuates host gene transcription during productive elongation. While the extent of attenuation correlates positively with nascent eRNA expression, the act of intragenic enhancer transcription alone, but not eRNAs, explains the attenuation. Through CRISPR/Cas9-mediated deletions, we demonstrate a physiological role for intragenic enhancer-mediated transcription attenuation in cell fate determination. We propose that intragenic enhancers not only enhance transcription of one or more genes from a distance but also fine-tune transcription of their host gene through transcription interference, facilitating differential utilization of the same regulatory element for disparate functions.
Project description:Paramyxoviruses are significant human and animal pathogens that include mumps virus (MuV), Newcastle disease virus (NDV) and the murine parainfluenza virus Sendai (SeV). Despite their importance, few host factors implicated in paramyxovirus infection are known. Using a recombinant SeV expressing destabilized eGFP (rSeVCdseGFP) in a loss-of-function CRISPR screen, we identified the CMP-sialic acid transporter (CST) gene SLC35A1 and the UDP-galactose transporter (UGT) gene SLC35A2 as essential for paramyxovirus infection. As expected, SLC35A1 knockout (KO) cells showed drastic reduction in infections with SeV, NDV and MuV due to the lack of cell surface sialic acids receptors. However, SLC35A2 KO cells revealed unknown critical roles for this factor in virus-cell and cell-to-cell fusion events for the different paramyxoviruses. While UGT was essential for virus-cell fusion during SeV entry to the cell, it was not required for NDV or MuV entry. Importantly, UGT promoted the formation of syncytia during MuV infection, suggesting a role in cell-to-cell virus spread. Our findings demonstrate that paramyxoviruses can bind to or enter A549 cells in the absence of canonical galactose-bound sialic-acid decorations and show that UGT facilitates paramyxovirus fusion processes involved in entry and spread.
Project description:S100A10, a member of the S100 family of Ca2+-binding proteins, is a widely distributed protein involved in many cellular and extracellular processes. The best recognized role of S100A10 is the regulation, via interaction with annexin A2, of plasminogen conversion to plasmin. Plasmin, together with other proteases, induces degradation of the extracellular matrix (ECM), which is an important step in tumor progression. Additionally, S100A10 interacts with 5-hydroxytryptamine 1B (5-HT1B) receptor, which influences neurotransmitter binding and, through that, depressive symptoms. Taking this into account, it is evident that S100A10 expression in the cell should be under strict control. In this work, we summarize available literature data concerning the physiological stimuli and transcription factors that influence S100A10 expression. We also present our original results showing for the first time regulation of S100A10 expression by grainyhead-like 2 transcription factor (GRHL2). By applying in silico analysis, we have found two highly conserved GRHL2 binding sites in the 1st intron of the gene encoding S100A10 protein. Using chromatin immunoprecipitation (ChIP) and luciferase assays, we have shown that GRHL2 directly binds to these sites and that this DNA region can affect transcription of S100A10.
Project description:BACKGROUND: The gut microbiota has profound effects on host physiology but local host-microbial interactions in the gut are only poorly characterised and are likely to vary from the sparsely colonised duodenum to the densely colonised colon. Microorganisms are recognised by pattern recognition receptors such as Toll-like receptors, which signal through the adaptor molecule MyD88. METHODS: To identify host responses induced by gut microbiota along the length of the gut and whether these required MyD88, transcriptional profiles of duodenum, jejunum, ileum and colon were compared from germ-free and conventionally raised wild-type and Myd88-/- mice. The gut microbial ecology was assessed by 454-based pyrosequencing and viruses were analysed by PCR. RESULTS: The gut microbiota modulated the expression of a large set of genes in the small intestine and fewer genes in the colon but surprisingly few microbiota-regulated genes required MyD88 signalling. However, MyD88 was essential for microbiota-induced colonic expression of the antimicrobial genes Reg3? and Reg3? in the epithelium, and Myd88 deficiency was associated with both a shift in bacterial diversity and a greater proportion of segmented filamentous bacteria in the small intestine. In addition, conventionally raised Myd88-/- mice had increased expression of antiviral genes in the colon, which correlated with norovirus infection in the colonic epithelium. CONCLUSION: This study provides a detailed description of tissue-specific host transcriptional responses to the normal gut microbiota along the length of the gut and demonstrates that the absence of MyD88 alters gut microbial ecology.
Project description:Microbiota are known to modulate host gene expression, yet the underlying molecular mechanisms remain elusive. MicroRNAs (miRNAs) are importantly implicated in many cellular functions by post-transcriptionally regulating gene expression via binding to the 3'-untranslated regions (3'-UTRs) of the target mRNAs. However, a role for miRNAs in microbiota-host interactions remains unknown. Here we investigated if miRNAs are involved in microbiota-mediated regulation of host gene expression. Germ-free mice were colonized with the microbiota from pathogen-free mice. Comparative profiling of miRNA expression using miRNA arrays revealed one and eight miRNAs that were differently expressed in the ileum and the colon, respectively, of colonized mice relative to germ-free mice. A computational approach was then employed to predict genes that were potentially targeted by the dysregulated miRNAs during colonization. Overlapping the miRNA potential targets with the microbiota-induced dysregulated genes detected by a DNA microarray performed in parallel revealed several host genes that were regulated by miRNAs in response to colonization. Among them, Abcc3 was identified as a highly potential miRNA target during colonization. Using the murine macrophage RAW 264.7 cell line, we demonstrated that mmu-miR-665, which was dysregulated during colonization, down-regulated Abcc3 expression by directly targeting the Abcc3 3'-UTR. In conclusion, our study demonstrates that microbiota modulate host microRNA expression, which could in turn regulate host gene expression.
Project description:ObjectivesSepsis causes significant mortality. However, most patients who die of sepsis do not present with severe infection, hampering efforts to deliver early, aggressive therapy. It is also known that the host gene expression response to infection precedes clinical illness. This study seeks to develop transcriptomic models to predict progression to sepsis or shock within 72 hours of hospitalization and to validate previously identified transcriptomic signatures in the prediction of 28-day mortality.DesignRetrospective differential gene expression analysis and predictive modeling using RNA sequencing data.PatientsTwo hundred seventy-seven patients enrolled at four large academic medical centers; all with clinically adjudicated infection were considered for inclusion in this study.Measurements and main resultsSepsis progression was defined as an increase in Sepsis 3 category within 72 hours. Transcriptomic data were generated using RNAseq of whole blood. Least absolute shrinkage and selection operator modeling was used to identify predictive signatures for various measures of disease progression. Four previously identified gene signatures were tested for their ability to predict 28-day mortality. There were no significant differentially expressed genes in 136 subjects with worsened Sepsis 3 category compared with 141 nonprogressor controls. There were 1,178 differentially expressed genes identified when sepsis progression was defined as ICU admission or 28-day mortality. A model based on these genes predicted progression with an area under the curve of 0.71. Validation of previously identified gene signatures to predict sepsis mortality revealed area under the receiver operating characteristic values of 0.70-0.75 and no significant difference between signatures.ConclusionsHost gene expression was unable to predict sepsis progression when defined by an increase in Sepsis-3 category, suggesting this definition is not a useful framework for transcriptomic prediction methods. However, there was a differential response when progression was defined as ICU admission or death. Validation of previously described signatures predicted 28-day mortality with insufficient accuracy to offer meaningful clinical utility.