Project description:The ability to inhibit drinking is a significant challenge for recovering alcoholics, especially in the presence of alcohol-associated cues. Previous studies have demonstrated that the regulation of cue-guided alcohol seeking is mediated by the basolateral amygdala (BLA), nucleus accumbens (NAc), and medial prefrontal cortex (mPFC). However, given the high interconnectivity between these structures, it is unclear how mPFC projections to each subcortical structure, as well as projections between BLA and NAc, mediate alcohol-seeking behaviors. Here, we evaluate how cortico-striatal, cortico-amygdalar, and amygdalo-striatal projections control extinction and relapse in a rat model of alcohol seeking. Specifically, we used a combinatorial viral technique to express diphtheria toxin receptors in specific neuron populations based on their projection targets. We then used this strategy to create directionally selective ablations of three distinct pathways after acquisition of ethanol self-administration but before extinction and reinstatement. We demonstrate that ablation of mPFC neurons projecting to NAc, but not BLA, blocks cue-induced reinstatement of alcohol seeking and neither pathway is necessary for extinction of responding. Further, we show that ablating BLA neurons that project to NAc disrupts extinction of alcohol approach behaviors and attenuates reinstatement. Together, these data provide evidence that the mPFC→NAc pathway is necessary for cue-induced reinstatement of alcohol seeking, expand our understanding of how the BLA→NAc pathway regulates alcohol behavior, and introduce a new methodology for the manipulation of target-specific neural projections.SIGNIFICANCE STATEMENT The vast majority of recovering alcoholics will relapse at least once and understanding how the brain regulates relapse will be key to developing more effective behavior and pharmacological therapies for alcoholism. Given the high interconnectivity of cortical, striatal, and limbic structures that regulate alcohol intake, it has been difficult to disentangle how separate projections between them may control different aspects of these complex behaviors. Here, we demonstrate a new approach for noninvasively ablating each of these pathways and testing their necessity for both extinction and relapse. We show that inputs to the nucleus accumbens from medial prefrontal cortex and amygdala regulate alcohol-seeking behaviors differentially, adding to our understanding of the neural control of alcoholism.
Project description:Both the nucleus accumbens (NAc) and basolateral amygdala (BLA) contribute to learned behavioral choice. Neurons in both structures that encode reward-predictive cues may underlie the decision to respond to such cues, but the neural circuits by which the BLA influences reward-seeking behavior have not been established. Here, we test the hypothesis that the BLA drives NAc neuronal responses to reward-predictive cues. First, using a disconnection experiment, we show that the BLA and dopamine projections to the NAc interact to promote the reward-seeking behavioral response. Next, we demonstrate that BLA neuronal responses to cues precede those of NAc neurons and that cue-evoked excitation of NAc neurons depends on BLA input. These results indicate that BLA input is required for dopamine to enhance the cue-evoked firing of NAc neurons and that this enhanced firing promotes reward-seeking behavior.
Project description:To make adaptive decisions, we build an internal model of the associative relationships in an environment and use it to make predictions and inferences about specific available outcomes. Detailed, identity-specific cue-reward memories are a core feature of such cognitive maps. Here we used fiber photometry, cell-type and pathway-specific optogenetic manipulation, Pavlovian cue-reward conditioning and decision-making tests in male and female rats, to reveal that ventral tegmental area dopamine (VTADA) projections to the basolateral amygdala (BLA) drive the encoding of identity-specific cue-reward memories. Dopamine is released in the BLA during cue-reward pairing; VTADA→BLA activity is necessary and sufficient to link the identifying features of a reward to a predictive cue but does not assign general incentive properties to the cue or mediate reinforcement. These data reveal a dopaminergic pathway for the learning that supports adaptive decision-making and help explain how VTADA neurons achieve their emerging multifaceted role in learning.
Project description:A key function of the nucleus accumbens is to promote vigorous reward seeking, but the corresponding neural mechanism has not been identified despite many years of research. Here, we study cued flexible approach behavior, a form of reward seeking that strongly depends on the accumbens, and we describe a robust, single-cell neural correlate of behavioral vigor in the excitatory response of accumbens neurons to reward-predictive cues. Well before locomotion begins, this cue-evoked excitation predicts both the movement initiation latency and the speed of subsequent flexible approach responses, but not those of stereotyped, inflexible responses. Moreover, the excitation simultaneously signals the subject's proximity to the approach target, a signal that appears to mediate greater response vigor on trials that begin with the subject closer to the target. These results demonstrate a neural mechanism for response invigoration whereby accumbens neuronal encoding of reward availability and target proximity together drive the onset and speed of reward-seeking locomotion.
Project description:BackgroundSleep impacts reward-motivated behaviors partly by retuning the brain reward circuits. The nucleus accumbens (NAc) is a reward processing hub sensitive to acute sleep deprivation. Glutamatergic transmission carrying reward-associated signals converges in the NAc and regulates various aspects of reward-motivated behaviors. The basolateral amygdala projection (BLAp) innervates broad regions of the NAc and critically regulates reward seeking.MethodsUsing slice electrophysiology, we measured how acute sleep deprivation alters transmission at BLAp-NAc synapses in male C57BL/6 mice. Moreover, using SSFO (stabilized step function opsin) and DREADDs (designer receptors exclusively activated by designer drugs) (Gi) to amplify and reduce transmission, respectively, we tested behavioral consequences following bidirectional manipulations of BLAp-NAc transmission.ResultsAcute sleep deprivation increased sucrose self-administration in mice and altered the BLAp-NAc transmission in a topographically specific manner. It selectively reduced glutamate release at the rostral BLAp (rBLAp) onto ventral and lateral NAc (vlNAc) synapses, but spared caudal BLAp onto medial NAc synapses. Furthermore, experimentally facilitating glutamate release at rBLAp-vlNAc synapses suppressed sucrose reward seeking. Conversely, mimicking sleep deprivation-induced reduction of rBLAp-vlNAc transmission increased sucrose reward seeking. Finally, facilitating rBLAp-vlNAc transmission per se did not promote either approach motivation or aversion.ConclusionsSleep acts on rBLAp-vINAc transmission gain control to regulate established reward seeking but does not convey approach motivation or aversion on its own.
Project description:Deficits in social interaction (SI) are a core symptom of autism spectrum disorders (ASDs); however, treatments for social deficits are notably lacking. Elucidating brain circuits and neuromodulatory signaling systems that regulate sociability could facilitate a deeper understanding of ASD pathophysiology and reveal novel treatments for ASDs. Here we found that in vivo optogenetic activation of the basolateral amygdala-nucleus accumbens (BLA-NAc) glutamatergic circuit reduced SI and increased social avoidance in mice. Furthermore, we found that 2-arachidonoylglycerol (2-AG) endocannabinoid signaling reduced BLA-NAc glutamatergic activity and that pharmacological 2-AG augmentation via administration of JZL184, a monoacylglycerol lipase inhibitor, blocked SI deficits associated with in vivo BLA-NAc stimulation. Additionally, optogenetic inhibition of the BLA-NAc circuit markedly increased SI in the Shank3B-/- mouse, an ASD model with substantial SI impairment, without affecting SI in WT mice. Finally, we demonstrated that JZL184 delivered systemically or directly to the NAc also normalized SI deficits in Shank3B-/- mice, while ex vivo JZL184 application corrected aberrant NAc excitatory and inhibitory neurotransmission and reduced BLA-NAc-elicited feed-forward inhibition of NAc neurons in Shank3B-/- mice. These data reveal circuit-level and neuromodulatory mechanisms regulating social function relevant to ASDs and suggest 2-AG augmentation could reduce social deficits via modulation of excitatory and inhibitory neurotransmission in the NAc.
Project description:The value of an anticipated rewarding event is a crucial component of the decision to engage in its pursuit. But little is known of the networks responsible for encoding and retrieving this value. By using biosensors and pharmacological manipulations, we found that basolateral amygdala (BLA) glutamatergic activity tracks and mediates encoding and retrieval of the state-dependent incentive value of a palatable food reward. Projection-specific, bidirectional chemogenetic and optogenetic manipulations revealed that the orbitofrontal cortex (OFC) supports the BLA in these processes. Critically, the function of ventrolateral and medial OFC→BLA projections is doubly dissociable. Whereas lateral OFC→BLA projections are necessary and sufficient for encoding of the positive value of a reward, medial OFC→BLA projections are necessary and sufficient for retrieving this value from memory. These data reveal a new circuit for adaptive reward valuation and pursuit and provide insight into the dysfunction in these processes that characterizes myriad psychiatric diseases.
Project description:Dopamine signaling in the nucleus accumbens (NAc) is essential for goal-directed behaviors and primarily arises from burst firing of ventral tegmental area neurons. However, the role of associative neural substrates such as the basolateral amygdala (BLA) in regulating phasic dopamine release in the NAc, particularly during reward seeking, remains unknown.Male Sprague-Dawley rats learned to discriminate two cues: a discriminative stimulus (DS) that predicted sucrose reinforcement contingent upon a lever press and a nonassociated stimulus (NS) that predicted a second lever never reinforced with sucrose. Following training, a test session was completed in which NAc dopamine was measured using fast-scan cyclic voltammetry in conjunction with inactivation of the ipsilateral BLA (gamma-aminobutyric acid agonists; baclofen/muscimol) to determine the contribution of BLA activity to dopamine release in the NAc core during the task.Under vehicle conditions, DS and NS presentation elicited dopamine release within the NAc core. The DS evoked significantly more dopamine than the NS. Inactivation of the BLA selectively attenuated the magnitude of DS-evoked dopamine release, concurrent with an attenuation of DS-evoked conditioned approaches. Other behavioral responses (e.g., lever pressing) and dopamine release concomitant with those events were unaltered by BLA inactivation. Furthermore, neither ventral tegmental area electrically stimulated dopamine release nor the probability of high concentration dopamine release events was altered following BLA inactivation.These results demonstrate that the BLA terminally modulates dopamine signals within the NAc core under specific, behaviorally relevant conditions, illustrating a functional mechanism by which the BLA selectively facilitates responding to motivationally salient environmental stimuli.
Project description:The basolateral amygdala (BLA) has a crucial role in emotional learning irrespective of valence. The BLA projection to the nucleus accumbens (NAc) is thought to modulate cue-triggered motivated behaviours, but our understanding of the interaction between these two brain regions has been limited by the inability to manipulate neural-circuit elements of this pathway selectively during behaviour. To circumvent this limitation, we used in vivo optogenetic stimulation or inhibition of glutamatergic fibres from the BLA to the NAc, coupled with intracranial pharmacology and ex vivo electrophysiology. Here we show that optical stimulation of the pathway from the BLA to the NAc in mice reinforces behavioural responding to earn additional optical stimulation of these synaptic inputs. Optical stimulation of these glutamatergic fibres required intra-NAc dopamine D1-type receptor signalling, but not D2-type receptor signalling. Brief optical inhibition of fibres from the BLA to the NAc reduced cue-evoked intake of sucrose, demonstrating an important role of this specific pathway in controlling naturally occurring reward-related behaviour. Moreover, although optical stimulation of glutamatergic fibres from the medial prefrontal cortex to the NAc also elicited reliable excitatory synaptic responses, optical self-stimulation behaviour was not observed by activation of this pathway. These data indicate that whereas the BLA is important for processing both positive and negative affect, the glutamatergic pathway from the BLA to the NAc, in conjunction with dopamine signalling in the NAc, promotes motivated behavioural responding. Thus, optogenetic manipulation of anatomically distinct synaptic inputs to the NAc reveals functionally distinct properties of these inputs in controlling reward-seeking behaviours.
Project description:The laterodorsal tegmentum (LDT) is associated with reward considering that it modulates VTA neuronal activity, but recent anatomical evidence shows that the LDT also directly projects to nucleus accumbens (NAc). We show that the majority of LDT-NAc inputs are cholinergic, but there is also GABAergic and glutamatergic innervation; activation of LDT induces a predominantly excitatory response in the NAc. Non-selective optogenetic activation of LDT-NAc projections in rats enhances motivational drive and shifts preference to an otherwise equal reward; whereas inhibition of these projections induces the opposite. Activation of these projections also induces robust place preference. In mice, specific activation of LDT-NAc cholinergic inputs (but not glutamatergic or GABAergic) is sufficient to shift preference, increase motivation, and drive positive reinforcement in different behavioral paradigms. These results provide evidence that LDT-NAc projections play an important role in motivated behaviors and positive reinforcement, and that distinct neuronal populations differentially contribute for these behaviors.