Unknown

Dataset Information

0

The tandem CCCH zinc finger protein tristetraprolin and its relevance to cytokine mRNA turnover and arthritis.


ABSTRACT: Tristetraprolin (TTP) is the best-studied member of a small family of three proteins in humans that is characterized by a tandem CCCH zinc finger (TZF) domain with highly conserved sequences and spacing. Although initially discovered as a gene that could be induced rapidly and transiently by the stimulation of fibroblasts with growth factors and mitogens, it is now known that TTP can bind to AU-rich elements in mRNA, leading to the removal of the poly(A) tail from that mRNA and increased rates of mRNA turnover. This activity was discovered after TTP-deficient mice were created and found to have a systemic inflammatory syndrome with severe polyarticular arthritis and autoimmunity, as well as medullary and extramedullary myeloid hyperplasia. The syndrome seemed to be due predominantly to excess circulating tumor necrosis factor-alpha (TNF-alpha), resulting from the increased stability of the TNF-alpha mRNA and subsequent higher rates of secretion of the cytokine. The myeloid hyperplasia might be due in part to increased stability of granulocyte-macrophage colony-stimulating factor (GM-CSF). This review highlights briefly the characteristics of the TTP-deficiency syndrome in mice and its possible genetic modifiers, as well as recent data on the characteristics of the TTP-binding site in the TNF-alpha and GM-CSF mRNAs. Recent structural data on the characteristics of the complex between RNA and one of the TTP-related proteins are reviewed, and used to model the TTP-RNA binding complex. We review the current knowledge of TTP sequence variants in humans and discuss the possible contributions of the TTP-related proteins in mouse physiology and in human monocytes. The TTP pathway of TNF-alpha and GM-CSF mRNA degradation is a possible novel target for anti-TNF-alpha therapies for rheumatoid arthritis, and also for other conditions proven to respond to anti-TNF-alpha therapy.

SUBMITTER: Carrick DM 

PROVIDER: S-EPMC1064869 | biostudies-literature | 2004

REPOSITORIES: biostudies-literature

altmetric image

Publications

The tandem CCCH zinc finger protein tristetraprolin and its relevance to cytokine mRNA turnover and arthritis.

Carrick Danielle M DM   Lai Wi S WS   Blackshear Perry J PJ  

Arthritis research & therapy 20041008 6


Tristetraprolin (TTP) is the best-studied member of a small family of three proteins in humans that is characterized by a tandem CCCH zinc finger (TZF) domain with highly conserved sequences and spacing. Although initially discovered as a gene that could be induced rapidly and transiently by the stimulation of fibroblasts with growth factors and mitogens, it is now known that TTP can bind to AU-rich elements in mRNA, leading to the removal of the poly(A) tail from that mRNA and increased rates o  ...[more]

Similar Datasets

| S-EPMC8635303 | biostudies-literature
| S-EPMC3976581 | biostudies-literature
| S-EPMC434251 | biostudies-literature
| S-EPMC3879578 | biostudies-literature
| S-EPMC3159726 | biostudies-literature
| S-EPMC6570553 | biostudies-literature
| S-EPMC2746470 | biostudies-literature
| S-EPMC3325588 | biostudies-literature
| S-EPMC5137377 | biostudies-literature
2020-11-05 | GSE135940 | GEO