Unknown

Dataset Information

0

Artificial Intelligence in the Prediction of Gastrointestinal Stromal Tumors on Endoscopic Ultrasonography Images: Development, Validation and Comparison with Endosonographers.


ABSTRACT:

Background/aims

The accuracy of endosonographers in diagnosing gastric subepithelial lesions (SELs) using endoscopic ultrasonography (EUS) is influenced by experience and subjectivity. Artificial intelligence (AI) has achieved remarkable development in this field. This study aimed to develop an AI-based EUS diagnostic model for the diagnosis of SELs, and evaluated its efficacy with external validation.

Methods

We developed the EUS-AI model with ResNeSt50 using EUS images from two hospitals to predict the histopathology of the gastric SELs originating from muscularis propria. The diagnostic performance of the model was also validated using EUS images obtained from four other hospitals.

Results

A total of 2,057 images from 367 patients (375 SELs) were chosen to build the models, and 914 images from 106 patients (108 SELs) were chosen for external validation. The sensitivity, specificity, positive predictive value, negative predictive value, and accuracy of the model for differentiating gastrointestinal stromal tumors (GISTs) and non-GISTs in the external validation sets by images were 82.01%, 68.22%, 86.77%, 59.86%, and 78.12%, respectively. The sensitivity, specificity, positive predictive value, negative predictive value, and accuracy in the external validation set by tumors were 83.75%, 71.43%, 89.33%, 60.61%, and 80.56%, respectively. The EUS-AI model showed better performance (especially specificity) than some endosonographers. The model helped improve the sensitivity, specificity, and accuracy of certain endosonographers.

Conclusions

We developed an EUS-AI model to classify gastric SELs originating from muscularis propria into GISTs and non-GISTs with good accuracy. The model may help improve the diagnostic performance of endosonographers. Further work is required to develop a multi-modal EUS-AI system.

SUBMITTER: Lu Y 

PROVIDER: S-EPMC10651383 | biostudies-literature | 2023 Jan

REPOSITORIES: biostudies-literature

altmetric image

Publications

Artificial Intelligence in the Prediction of Gastrointestinal Stromal Tumors on Endoscopic Ultrasonography Images: Development, Validation and Comparison with Endosonographers.

Lu Yi Y   Wu Jiachuan J   Hu Minhui M   Zhong Qinghua Q   Er Limian L   Shi Huihui H   Cheng Weihui W   Chen Ke K   Liu Yuan Y   Qiu Bingfeng B   Xu Qiancheng Q   Lai Guangshun G   Wang Yufeng Y   Luo Yuxuan Y   Mu Jinbao J   Zhang Wenjie W   Zhi Min M   Sun Jiachen J  

Gut and liver 20230126 6


<h4>Background/aims</h4>The accuracy of endosonographers in diagnosing gastric subepithelial lesions (SELs) using endoscopic ultrasonography (EUS) is influenced by experience and subjectivity. Artificial intelligence (AI) has achieved remarkable development in this field. This study aimed to develop an AI-based EUS diagnostic model for the diagnosis of SELs, and evaluated its efficacy with external validation.<h4>Methods</h4>We developed the EUS-AI model with ResNeSt50 using EUS images from two  ...[more]

Similar Datasets

| S-EPMC10233610 | biostudies-literature
| S-EPMC10584296 | biostudies-literature
| S-EPMC8891262 | biostudies-literature
| S-EPMC9972141 | biostudies-literature
| S-EPMC6697318 | biostudies-literature
| S-EPMC10502535 | biostudies-literature
| S-EPMC7581460 | biostudies-literature
| S-EPMC7725529 | biostudies-literature
| S-EPMC8582393 | biostudies-literature
| S-EPMC7732722 | biostudies-literature