Unknown

Dataset Information

0

Adenine base editor-mediated correction of the common and severe IVS1-110 (G>A) β-thalassemia mutation.


ABSTRACT: β-Thalassemia (BT) is one of the most common genetic diseases worldwide and is caused by mutations affecting β-globin production. The only curative treatment is allogenic hematopoietic stem/progenitor cells (HSPCs) transplantation, an approach limited by compatible donor availability and immunological complications. Therefore, transplantation of autologous, genetically-modified HSPCs is an attractive therapeutic option. However, current gene therapy strategies based on the use of lentiviral vectors are not equally effective in all patients and CRISPR/Cas9 nuclease-based strategies raise safety concerns. Thus, base editing strategies aiming to correct the genetic defect in patients' HSPCs could provide safe and effective treatment. Here, we developed a strategy to correct one of the most prevalent BT mutations (IVS1-110 [G>A]) using the SpRY-ABE8e base editor. RNA delivery of the base editing system was safe and led to ∼80% of gene correction in the HSPCs of patients with BT without causing dangerous double-strand DNA breaks. In HSPC-derived erythroid populations, this strategy was able to restore β-globin production and correct inefficient erythropoiesis typically observed in BT both in vitro and in vivo. In conclusion, this proof-of-concept study paves the way for the development of a safe and effective autologous gene therapy approach for BT.

SUBMITTER: Hardouin G 

PROVIDER: S-EPMC10651780 | biostudies-literature | 2023 Mar

REPOSITORIES: biostudies-literature

altmetric image

Publications

Adenine base editor-mediated correction of the common and severe IVS1-110 (G>A) β-thalassemia mutation.

Hardouin Giulia G   Antoniou Panagiotis P   Martinucci Pierre P   Felix Tristan T   Manceau Sandra S   Joseph Laure L   Masson Cécile C   Scaramuzza Samantha S   Ferrari Giuliana G   Cavazzana Marina M   Miccio Annarita A  

Blood 20230301 10


β-Thalassemia (BT) is one of the most common genetic diseases worldwide and is caused by mutations affecting β-globin production. The only curative treatment is allogenic hematopoietic stem/progenitor cells (HSPCs) transplantation, an approach limited by compatible donor availability and immunological complications. Therefore, transplantation of autologous, genetically-modified HSPCs is an attractive therapeutic option. However, current gene therapy strategies based on the use of lentiviral vect  ...[more]

Similar Datasets

2025-05-05 | GSE273814 | GEO
| S-EPMC5676594 | biostudies-literature
| S-EPMC10853587 | biostudies-literature
| S-EPMC7001054 | biostudies-literature
2025-05-05 | GSE292238 | GEO
| S-EPMC9666996 | biostudies-literature
| S-EPMC11299580 | biostudies-literature
| S-EPMC9481987 | biostudies-literature
2022-08-25 | GSE211876 | GEO
| S-EPMC6952419 | biostudies-literature