Project description:Neuromorphic systems comprised of self-assembled nanowires exhibit a range of neural-like dynamics arising from the interplay of their synapse-like electrical junctions and their complex network topology. Additionally, various information processing tasks have been demonstrated with neuromorphic nanowire networks. Here, we investigate the dynamics of how these unique systems process information through information-theoretic metrics. In particular, Transfer Entropy (TE) and Active Information Storage (AIS) are employed to investigate dynamical information flow and short-term memory in nanowire networks. In addition to finding that the topologically central parts of networks contribute the most to the information flow, our results also reveal TE and AIS are maximized when the networks transitions from a quiescent to an active state. The performance of neuromorphic networks in memory and learning tasks is demonstrated to be dependent on their internal dynamical states as well as topological structure. Optimal performance is found when these networks are pre-initialised to the transition state where TE and AIS are maximal. Furthermore, an optimal range of information processing resources (i.e. connectivity density) is identified for performance. Overall, our results demonstrate information dynamics is a valuable tool to study and benchmark neuromorphic systems.
Project description:Imitation-matching the configural body movements of another individual-plays a crucial part in social interaction. We investigated whether automatic imitation is not only influenced by who we imitate (ingroup vs. outgroup member) but also by the nature of an expected interaction situation (competitive vs. cooperative). In line with assumptions from Social Identity Theory), we predicted that both social group membership and the expected situation impact on the level of automatic imitation. We adopted a 2 (group membership target: ingroup, outgroup) x 2 (situation: cooperative, competitive) design. The dependent variable was the degree to which participants imitated the target in a reaction time automatic imitation task. 99 female students from two British Universities participated. We found a significant two-way interaction on the imitation effect. When interacting in expectation of cooperation, imitation was stronger for an ingroup target compared to an outgroup target. However, this was not the case in the competitive condition where imitation did not differ between ingroup and outgroup target. This demonstrates that the goal structure of an expected interaction will determine the extent to which intergroup relations influence imitation, supporting a social identity approach.
Project description:IntroductionReconstructing a bounded object from incomplete k-space data is a well posed problem, and it was recently shown that this incomplete spectrum approach can be used to reconstruct undersampled MRI images with similar quality to compressed sensing approaches. Here, we apply this incomplete spectrum approach to the field-to-source inverse problem encountered in quantitative magnetic susceptibility mapping (QSM). The field-to-source problem is an ill-posed problem because of conical regions in frequency space where the dipole kernel is zero or very small, which leads to the kernel's inverse being ill-defined. These "ill-posed" regions typically lead to streaking artifacts in QSM reconstructions. In contrast to compressed sensing, our approach relies on knowledge of the image-space support, more commonly referred to as the mask, of our object as well as the region in k-space with ill-defined values. In the QSM case, this mask is usually available, as it is required for most QSM background field removal and reconstruction methods.MethodsWe tuned the incomplete spectrum method (mask and band-limit) for QSM on a simulated dataset from the most recent QSM challenge and validated the QSM reconstruction results on brain images acquired in five healthy volunteers, comparing incomplete spectrum QSM to current state-of-the art-methods: FANSI, nonlinear dipole inversion, and conventional thresholded k-space division.ResultsWithout additional regularization, incomplete spectrum QSM performs slightly better than direct QSM reconstruction methods such as thresholded k-space division (PSNR of 39.9 vs. 39.4 of TKD on a simulated dataset) and provides susceptibility values in key iron-rich regions similar or slightly lower than state-of-the-art algorithms, but did not improve the PSNR in comparison to FANSI or nonlinear dipole inversion. With added (ℓ1-wavelet based) regularization the new approach produces results similar to compressed sensing based reconstructions (at sufficiently high levels of regularization).DiscussionIncomplete spectrum QSM provides a new approach to handle the "ill-posed" regions in the frequency-space data input to QSM.
Project description:We explore the evolutionary dynamics of two games-the Prisoner's Dilemma and the Snowdrift Game-played within distinct networks (layers) of interdependent networks. In these networks imitation and interaction between individuals of opposite layers is established through interlinks. We explore an update rule in which revision of strategies is a biased imitation process: individuals imitate neighbors from the same layer with probability p, and neighbors from the second layer with complementary probability 1 - p. We demonstrate that a small decrease of p from p = 1 (which corresponds to forbidding strategy transfer between layers) is sufficient to promote cooperation in the Prisoner's Dilemma subpopulation. This, on the other hand, is detrimental for cooperation in the Snowdrift Game subpopulation. We provide results of extensive computer simulations for the case in which layers are modelled as regular random networks, and support this study with analytical results for coupled well-mixed populations.
Project description:Like many other social phenomena, prostitution is increasingly coordinated over the Internet. The online behavior affects the offline activity; the reverse is also true. We investigated the reported sexual contacts between 6,624 anonymous escorts and 10,106 sex buyers extracted from an online community from its beginning and six years on. These sexual encounters were also graded and categorized (in terms of the type of sexual activities performed) by the buyers. From the temporal, bipartite network of posts, we found a full feedback loop in which high grades on previous posts affect the future commercial success of the sex worker, and vice versa. We also found a peculiar growth pattern in which the turnover of community members and sex workers causes a sublinear preferential attachment. There is, moreover, a strong geographic influence on network structure--the network is geographically clustered but still close to connected, the contacts consistent with the inverse-square law observed in trading patterns. We also found that the number of sellers scales sublinearly with city size, so this type of prostitution does not, comparatively speaking, benefit much from an increasing concentration of people.
Project description:The gene encoding the forkhead box transcription factor, FOXP2, is essential for developing the full articulatory power of human language. Mutations of FOXP2 cause developmental verbal dyspraxia (DVD), a speech and language disorder that compromises the fluent production of words and the correct use and comprehension of grammar. FOXP2 patients have structural and functional abnormalities in the striatum of the basal ganglia, which also express high levels of FOXP2. Since human speech and learned vocalizations in songbirds bear behavioral and neural parallels, songbirds provide a genuine model for investigating the basic principles of speech and its pathologies. In zebra finch Area X, a basal ganglia structure necessary for song learning, FoxP2 expression increases during the time when song learning occurs. Here, we used lentivirus-mediated RNA interference (RNAi) to reduce FoxP2 levels in Area X during song development. Knockdown of FoxP2 resulted in an incomplete and inaccurate imitation of tutor song. Inaccurate vocal imitation was already evident early during song ontogeny and persisted into adulthood. The acoustic structure and the duration of adult song syllables were abnormally variable, similar to word production in children with DVD. Our findings provide the first example of a functional gene analysis in songbirds and suggest that normal auditory-guided vocal motor learning requires FoxP2.
Project description:Widely used approaches for extracting phylogenetic information from aligned sets of molecular sequences rely upon probabilistic models of nucleotide substitution or amino-acid replacement. The phylogenetic information that can be extracted depends on the number of columns in the sequence alignment and will be decreased when the alignment contains gaps due to insertion or deletion events. Motivated by the measurement of information loss, we suggest assessment of the effective sequence length (ESL) of an aligned data set. The ESL can differ from the actual number of columns in a sequence alignment because of the presence of alignment gaps. Furthermore, the estimation of phylogenetic information is affected by model misspecification. Inevitably, the actual process of molecular evolution differs from the probabilistic models employed to describe this process. This disparity means the amount of phylogenetic information in an actual sequence alignment will differ from the amount in a simulated data set of equal size, which motivated us to develop a new test for model adequacy. Via theory and empirical data analysis, we show how to disentangle the effects of gaps and model misspecification. By comparing the Fisher information of actual and simulated sequences, we identify which alignment sites and tree branches are most affected by gaps and model misspecification. [Fisher information; gaps; insertion; deletion; indel; model adequacy; goodness-of-fit test; sequence alignment.].
Project description:Indirect reciprocity is a mechanism for cooperation based on shared moral systems and individual reputations. It assumes that members of a community routinely observe and assess each other and that they use this information to decide who is good or bad, and who deserves cooperation. When information is transmitted publicly, such that all community members agree on each other's reputation, previous research has highlighted eight crucial moral systems. These "leading-eight" strategies can maintain cooperation and resist invasion by defectors. However, in real populations individuals often hold their own private views of others. Once two individuals disagree about their opinion of some third party, they may also see its subsequent actions in a different light. Their opinions may further diverge over time. Herein, we explore indirect reciprocity when information transmission is private and noisy. We find that in the presence of perception errors, most leading-eight strategies cease to be stable. Even if a leading-eight strategy evolves, cooperation rates may drop considerably when errors are common. Our research highlights the role of reliable information and synchronized reputations to maintain stable moral systems.
Project description:In order to understand the transmission of a disease across a population we will have to understand not only the dynamics of contact infection but the transfer of health-care beliefs and resulting health-care behaviors across that population. This paper is a first step in that direction, focusing on the contrasting role of linkage or isolation between sub-networks in (a) contact infection and (b) belief transfer. Using both analytical tools and agent-based simulations we show that it is the structure of a network that is primary for predicting contact infection-whether the networks or sub-networks at issue are distributed ring networks or total networks (hubs, wheels, small world, random, or scale-free for example). Measured in terms of time to total infection, degree of linkage between sub-networks plays a minor role. The case of belief is importantly different. Using a simplified model of belief reinforcement, and measuring belief transfer in terms of time to community consensus, we show that degree of linkage between sub-networks plays a major role in social communication of beliefs. Here, in contrast to the case of contract infection, network type turns out to be of relatively minor importance. What you believe travels differently. In a final section we show that the pattern of belief transfer exhibits a classic power law regardless of the type of network involved.
Project description:Beyond normal and non-imitative singing, the imitation of the timbre of another singer's voice, such as in Karaoke singing, involves the demanding reproduction of voice quality features and strongly depends on singing experience and practice. We show that precise voice imitation in a highly proficient and experienced vocal imitator, even in the absence of external auditory voice feedback, largely drew on internal cortico-subcortical auditory resources to control voicing errors based on imagined voice performance. Compared to the experienced vocal imitator, singers of a control group without experience in voice imitation used only sensorimotor feedback and demanding monitoring resources for imitation in the absence of voice feedback, a neural strategy that led, however, to a significantly poorer vocal performance. Thus, only long-term vocal imitation experience allows for the additional use of internal auditory brain resources, which result from training-induced brain plasticity, and which enable accurate vocal performance even under difficult performance conditions.