Project description:BackgroundIdentification of epidermal growth factor receptor (EGFR) mutation types is crucial before tyrosine kinase inhibitors (TKIs) treatment. Radiomics is a new strategy to noninvasively predict the genetic status of cancer. In this study, we aimed to develop a predictive model based on 18F-fluorodeoxyglucose positron emission tomography-computed tomography (18F-FDG PET/CT) radiomic features to identify the specific EGFR mutation subtypes.MethodsWe retrospectively studied 18F-FDG PET/CT images of 148 patients with isolated lung lesions, which were scanned in two hospitals with different CT scan setting (slice thickness: 3 and 5 mm, respectively). The tumor regions were manually segmented on PET/CT images, and 1,570 radiomic features (1,470 from CT and 100 from PET) were extracted from the tumor regions. Seven hundred and ninety-four radiomic features insensitive to different CT settings were first selected using the Mann white U test, and collinear features were further removed from them by recursively calculating the variation inflation factor. Then, multiple supervised machine learning models were applied to identify prognostic radiomic features through: (I) a multi-variate random forest to select features of high importance in discriminating different EGFR mutation status; (II) a logistic regression model to select features of the highest predictive value of the EGFR subtypes. The EGFR mutation predicting model was constructed from prognostic radiomic features using the popular Xgboost machine-learning algorithm and validated using 3-fold cross-validation. The performance of predicting model was analyzed using the receiver operating characteristic curve (ROC) and measured with the area under the curve (AUC).ResultsTwo sets of prognostic radiomic features were found for specific EGFR mutation subtypes: 5 radiomic features for EGFR exon 19 deletions, and 5 radiomic features for EGFR exon 21 L858R missense. The corresponding radiomic predictors achieved the prediction accuracies of 0.77 and 0.92 in terms of AUC, respectively. Combing these two predictors, the overall model for predicting EGFR mutation positivity was also constructed, and the AUC was 0.87.ConclusionsIn our study, we established predictive models based on radiomic analysis of 18F-FDG PET/CT images. And it achieved a satisfying prediction power in the identification of EGFR mutation status as well as the certain EGFR mutation subtypes in lung cancer.
Project description:Knowledge of the intrinsic variability of radiomic features is essential to the proper interpretation of changes in these features over time. The primary aim of this study was to assess the test-retest repeatability of radiomic features extracted from 18F-FDG PET images of cervical tumors. The impact of different image preprocessing methods was also explored. Methods: Patients with cervical cancer underwent baseline and repeat 18F-FDG PET/CT imaging within 7 d. PET images were reconstructed using 2 methods: ordered-subset expectation maximization (PETOSEM) or ordered-subset expectation maximization with point-spread function (PETPSF). Tumors were segmented to produce whole-tumor volumes of interest (VOIWT) and 40% isocontours (VOI40). Voxels were either left at the default size or resampled to 3-mm isotropic voxels. SUV was discretized to a fixed number of bins (32, 64, or 128). Radiomic features were extracted from both VOIs, and repeatability was then assessed using the Lin concordance correlation coefficient (CCC). Results: Eleven patients were enrolled and completed the test-retest PET/CT imaging protocol. Shape, neighborhood gray-level difference matrix, and gray-level cooccurrence matrix features were repeatable, with a mean CCC value of 0.81. Radiomic features extracted from PETOSEM images showed significantly better repeatability than features extracted from PETPSF images (P < 0.001). Radiomic features extracted from VOI40 were more repeatable than features extracted from VOIWT (P < 0.001). For most features (78.4%), a change in bin number or voxel size resulted in less than a 10% change in feature value. All gray-level emphasis and gray-level run emphasis features showed poor repeatability (CCC values < 0.52) when extracted from VOIWT but were highly repeatable (mean CCC values > 0.96) when extracted from VOI40 Conclusion: Shape, gray-level cooccurrence matrix, and neighborhood gray-level difference matrix radiomic features were consistently repeatable, whereas gray-level run length matrix and gray-level zone length matrix features were highly variable. Radiomic features extracted from VOI40 were more repeatable than features extracted from VOIWT Changes in voxel size or SUV discretization parameters typically resulted in relatively small differences in feature value, though several features were highly sensitive to these changes.
Project description:BackgroundThis study aims to construct radiomics models based on [18F]FDG PET/CT using multiple machine learning methods to predict the EGFR mutation status of lung adenocarcinoma and evaluate whether incorporating clinical parameters can improve the performance of radiomics models.MethodsA total of 515 patients were retrospectively collected and divided into a training set (n = 404) and an independent testing set (n = 111) according to their examination time. After semi-automatic segmentation of PET/CT images, the radiomics features were extracted, and the best feature sets of CT, PET, and PET/CT modalities were screened out. Nine radiomics models were constructed using logistic regression (LR), random forest (RF), and support vector machine (SVM) methods. According to the performance in the testing set, the best model of the three modalities was kept, and its radiomics score (Rad-score) was calculated. Furthermore, combined with the valuable clinical parameters (gender, smoking history, nodule type, CEA, SCC-Ag), a joint radiomics model was built.ResultsCompared with LR and SVM, the RF Rad-score showed the best performance among the three radiomics models of CT, PET, and PET/CT (training and testing sets AUC: 0.688, 0.666, and 0.698 vs. 0.726, 0.678, and 0.704). Among the three joint models, the PET/CT joint model performed the best (training and testing sets AUC: 0.760 vs. 0.730). The further stratified analysis found that CT_RF had the best prediction effect for stage I-II lesions (training set and testing set AUC: 0.791 vs. 0.797), while PET/CT joint model had the best prediction effect for stage III-IV lesions (training and testing sets AUC: 0.722 vs. 0.723).ConclusionsCombining with clinical parameters can improve the predictive performance of PET/CT radiomics model, especially for patients with advanced lung adenocarcinoma.
Project description:(1) Background: To investigate the association between maximum standardized uptake value (SUVmax) based on 18F-FDG PET/CT and EGFR mutation status in lung adenocarcinoma. (2) Methods: A total of 366 patients were retrospectively collected and divided into the EGFR mutation group (n = 228) and EGFR wild-type group (n = 138) according to their EGFR mutation status. The two groups' general information and PET/CT imaging parameters were compared. A hierarchical binary logistic regression model was used to assess the interaction effect on the relationship between SUVmax and EGFR mutation in different subgroups. Univariate and multivariate logistic regression was used to analyze the association between SUVmax and EGFR mutation. After adjusting for confounding factors, a generalized additive model and smooth curve fitting were applied to address possible non-linearities. (3) Results: Smoking status significantly affected the relationship between SUVmax and EGFR mutation (p for interaction = 0.012), with an interaction effect. After adjusting for age, gender, nodule type, bronchial sign, and CEA grouping, in the smoking subgroup, curve fitting results showed that the relationship between SUVmax and EGFR mutation was approximately linear (df = 1.000, c2 = 3.897, p = 0.048); with the increase in SUVmax, the probability of EGFR mutation gradually decreased, and the OR value was 0.952 (95%CI: 0.908-0.999; p = 0.045). (4) Conclusions: Smoking status can affect the relationship between SUVmax and EGFR mutation status in lung adenocarcinoma, especially in the positive smoking history subgroup. Fully understanding the effect of smoking status will help to improve the accuracy of SUVmax in predicting EGFR mutations.
Project description:PurposeTo develop and interpret optimal predictive models to identify epidermal growth factor receptor (EGFR) mutation status and subtypes in patients with lung adenocarcinoma based on multicentric 18F-FDG PET/CT data, and further construct a prognostic model to predict their clinical outcome.MethodsThe 18F-FDG PET/CT imaging and clinical characters of 767 patients with lung adenocarcinoma from 4 cohorts were collected. Seventy-six radiomics candidates using cross-combination method to identity EGFR mutation status and subtypes were built. Further, Shapley additive explanations and local interpretable model-agnostic explanations were used for optimal models' interpretation. Moreover, in order to predict the overall survival, a multivariate Cox proportional hazard model based on handcrafted radiomics features and clinical characteristics was constructed. The predictive performance and clinical net benefit of the models were evaluated via area under receiver operating characteristic (AUC), C-index and decision curve analysis.ResultsAmong the 76 radiomics candidates, light gradient boosting machine classifier (LGBM) combined with recursive feature elimination wrapped LGBM feature selection method achieved best performance in predicting EGFR mutation status (AUC reached 0.80, 0.61, 0.71 in the internal test cohort and two external test cohorts, respectively). And extreme gradient boosting classifier combined with support vector machine feature selection method achieved best performance in predicting EGFR subtypes (AUC reached 0.76, 0.63, 0.61 in the internal test cohort and two external test cohorts, respectively). The C-index of the Cox proportional hazard model achieved 0.863.ConclusionsThe integration of cross-combination method and the external validation from multi-center data achieved a good prediction and generalization performance in predicting EGFR mutation status and its subtypes. The combination of handcrafted radiomics features and clinical factors achieved good performance in predicting prognosis. With the urgent needs of multicentric 18F-FDG PET/CT trails, robust and explainable radiomics models have great potential in decision making and prognosis prediction of lung adenocarcinoma.
Project description:BackgroundA non-invasive, simple, and convenient method to evaluate the presence of epidermal growth factor receptor (EGFR) mutations is important for initial treatment decisions in lung adenocarcinoma.MethodsWe retrospectively reviewed 297 untreated primary lung adenocarcinoma patients with exact EGFR status. Based on their EGFR status, the patients were divided into a mutant-type group (138 patients) and wild-type group (159 patients). General patient characteristics and possible factors reflecting the status of EGFR were also evaluated.ResultsOf the 297 lung adenocarcinoma patients analyzed for EGFR status who underwent positron emission tomography (PET)/computed tomography (CT) between January 2013 and December 2017, mutations in the EGFR gene were detected in 138 patients (46.5%). EGFR mutations were more frequently associated with women, never smokers, and low 18F-fluoro-2-deoxy-glucose (18F-FDG) PET/CT maximal standard uptake value of the primary tumor (pSUVmax). Multivariate analysis indicated that women [odds ratio (OR) =2.853; 95% confidence interval (CI): 1.451-5.611; P=0.002], never smokers (OR =2.414; 95% CI: 1.217-4.789; P=0.012), tumor size <3.5 cm (OR, 2.170; 95% CI: 1.205-3.908; P=0.010), and pSUVmax <8.2 (OR =1.904; 95% CI: 1.098-3.302; P=0.022) were effective predictors of EGFR mutation. In addition, the area under the curve (AUC) of pSUVmax and tumor size was 0.623 and 0.600, respectively. Combined with clinical characteristics, including sex and smoking status, the AUC of the 4 predictors was 0.770.ConclusionsThese indicators could be helpful for enhancing predictive accuracy of EGFR mutations in lung adenocarcinoma patients, especially in those for whom EGFR detection is unavailable.
Project description:ObjectiveTo compare the effectiveness of radiomic features based on 18F-FDG PET/CT images within (intranodular) and around (perinodular) lung nodules/masses in distinguishing between lung adenocarcinoma and pulmonary granulomas.MethodsFor this retrospective study, 18F-FDG PET/CT images were collected for 228 patients. Patients diagnosed with lung adenocarcinoma (n = 156) or granulomas (n = 72) were randomly assigned to a training (n = 159) and validation (n = 69) groups. The volume of interest (VOI) of intranodular, perinodular (1-5 voxels, termed Lesion_margin1 to Lesion_margin5) and total area (intra- plus perinodular region, termed Lesion_total1 to Lesion_total5) on PET/CT images were delineated using PETtumor and Marge tool of segmentation editor. A total of 1,037 radiomic features were extracted separately from PET and CT images, and the optimal features were selected to develop radiomic models. Model performance was evaluated using the area under the receiver operating characteristic curve (AUC).ResultsGood and acceptable performance was, respectively, observed in the training (AUC = 0.868, p < 0.001) and validation (AUC = 0.715, p = 0.004) sets for the intranodular radiomic model. Among the perinodular models, the Lesion_margin2 model demonstrated the highest AUC in both sets (0.883 and 0.616, p < 0.001 and p = 0.122). Similarly, in terms of total models, Lesion_total2 model was found to outperform others in the training (AUC = 0.879, p < 0.001) and validation (AUC = 0.742, p = 0.001) sets, slightly surpassing the intranodular model.ConclusionWhen intra- and perinodular radiomic features extracted from the immediate vicinity of the nodule/mass up to 2 voxels distance on 18F-FDG PET/CT imaging are combined, improved differential diagnostic performance in distinguishing between lung adenocarcinomas and granulomas is achieved compared to the intra- and perinodular radiomic features alone.
Project description:BackgroundTo develop and validate a survival model with clinico-biological features and 18F- FDG PET/CT radiomic features via machine learning, and for predicting the prognosis from the primary tumor of colorectal cancer.MethodsA total of 196 pathologically confirmed patients with colorectal cancer (stage I to stage IV) were included. Preoperative clinical factors, serum tumor markers, and PET/CT radiomic features were included for the recurrence-free survival analysis. For the modeling and validation, patients were randomly divided into the training (n = 137) and validation (n = 59) set, while the 78 stage III patients [training (n = 55), and validation (n = 23)] was divided for the further experiment. After selecting features by the log-rank test and variable-hunting methods, random survival forest (RSF) models were built on the training set to analyze the prognostic value of selected features. The performance of models was measured by C-index and was tested on the validation set with bootstrapping. Feature importance and the Pearson correlation were also analyzed.ResultsRadiomics signature (containing four PET/CT features and four clinical factors) achieved the best result for prognostic prediction of 196 patients (C-index 0.780, 95% CI 0.634-0.877). Moreover, four features (including two clinical features and two radiomics features) were selected for prognostic prediction of the 78 stage III patients (C-index was 0.820, 95% CI 0.676-0.900). K-M curves of both models significantly stratified low-risk and high-risk groups (P < 0.0001). Pearson correlation analysis demonstrated that selected radiomics features were correlated with tumor metabolic factors, such as SUVmean, SUVmax.ConclusionThis study presents integrated clinico-biological-radiological models that can accurately predict the prognosis in colorectal cancer using the preoperative 18F-FDG PET/CT radiomics in colorectal cancer. It is of potential value in assisting the management and decision making for precision treatment in colorectal cancer. Trial registration The retrospectively registered study was approved by the Ethics Committee of Fudan University Shanghai Cancer Center (No. 1909207-14-1910) and the data were analyzed anonymously.
Project description:PurposeTo establish an explainable 18F-FDG PET/CT-derived prediction model to identify EGFR mutation status and subtypes (EGFR wild, EGFR-E19, and EGFR-E21) in lung adenocarcinoma (LUAD).MethodsBaseline 18F-FDG PET/CT images of 478 patients with LUAD from 2 hospitals were collected. Data from hospital A (n = 390) was randomly split into a training group (n = 312) and an internal test group (n = 78), with data from hospital B (n = 88) utilized for external test. Further, a total of 4,760 handcrafted radiomics features (HRFs) were extracted from PET/CT scans. Candidates for the prediction model were constructed by cross-combinations of 11 feature selection methods and 7 classifiers. The optimal model was determined by combining the results of cross-center data validation and model visualization (Yellowbrick). The predictive performance was assessed via receiver operating characteristic curve, confusion matrix and classification report. Four explainable artificial intelligence technologies were used for optimal model interpretation.ResultsSex and SUVmax were selected as clinical risk factors, which were then combined with 8 robust PET/CT HRFs to establish the models. The optimal performance was obtained by combining a light gradient boosting machine classifier with random forest feature selection method achieving an optimal performance with a macro-average AUC of 0.75 in the internal test group and 0.81 in the external test group.ConclusionThe explainable EGFR mutation status prediction model have certain clinical practicability and good generalization performance, which may help in the timely selection of treatment options and prognosis prediction in patients with LUAD.
Project description:At present, 18F-fluorodesoxyglucose (18FDG) positron emission tomography (PET)/computed tomography (CT) cannot be used to omit a bone marrow biopsy (BMB) among initial staging procedures in follicular lymphoma (FL). The additional diagnostic value of skeletal textural features on baseline 18FDG-PET/CT in diffuse large B-cell lymphoma (DLBCL) patients has given promising results. The aim of this study is to evaluate the value of 18FDG-PET/CT radiomics for the diagnosis of bone marrow involvement (BMI) in FL patients. This retrospective bicentric study enrolled newly diagnosed FL patients addressed for baseline 18FDG PET/CT. For visual assessment, examinations were considered positive in cases of obvious bone focal uptakes. For textural analysis, the skeleton volumes of interest (VOIs) were automatically extracted from segmented CT images and analysed using LifeX software. BMB and visual assessment were taken as the gold standard: BMB -/PET - patients were considered as bone-NEGATIVE patients, whereas BMB +/PET -, BMB -/PET + and BMB +/PET + patients were considered bone-POSITIVE patients. A LASSO regression algorithm was used to select features of interest and to build a prediction model. Sixty-six consecutive patients were included: 36 bone-NEGATIVE (54.5%) and 30 bone-POSITIVE (45.5%). The LASSO regression found variance_GLCM, correlation_GLCM, joint entropy_GLCM and busyness_NGLDM to have nonzero regression coefficients. Based on ROC analysis, a cut-off equal to - 0.190 was found to be optimal for the diagnosis of BMI using PET pred.score. The corresponding sensitivity, specificity, PPV and NPV values were equal to 70.0%, 83.3%, 77.8% and 76.9%, respectively. When comparing the ROC AUCs with using BMB alone, visual PET assessment or PET pred.score, a significant difference was found between BMB versus visual PET assessments (p = 0.010) but not between BMB and PET pred.score assessments (p = 0.097). Skeleton texture analysis is worth exploring to improve the performance of 18FDG-PET/CT for the diagnosis of BMI at baseline in FL patients.