Project description:Splicing defects from deep-intronic variants significantly contribute to the mutational spectrum in ABCA4-associated inherited retinal diseases, necessitating functional validation for their pathological classification. Typically, minigene assays in HEK293(T) can qualitatively assess splicing defects, yet they often fail to quantitatively reproduce the resulting mis-splicing patterns, leaving uncertainty on severity and pathogenicity. As a potential cellular model derived from patient cells, photoreceptor precursor cells (PPCs) play a pivotal role in assessing the severity of specific splicing mutations. Nevertheless, the accessibility of biosamples is commonly constrained, and their establishment is costly and laborious. In this study, we combined and investigated the use of a minigene assay and isogenic PPCs, as superior qualitative and more accessible cellular models for the assessment of splicing defects. Specifically, we focused on the clustered c.5196+1013A>G, c.5196+1056A>G, and c.5196+1216C>A deep-intronic variants in intron 36 of ABCA4, comparing their resulting (mis)splicing patterns in minigene-transfected cells and isogenic CRISPR-Cas9-knocked-in PPCs harboring these pathogenic variants in homozygous state. Moreover, we demonstrate the successful correction of these three splicing defects in homozygous mutant PPCs using a single pair of guide RNAs to target Cas9 cleavage, thereby identifying an efficient gene editing strategy for therapeutic applications.
Project description:Mutations in CLRN1 cause Usher syndrome (USH) type III (USH3A), a disease characterized by progressive hearing impairment, retinitis pigmentosa, and vestibular dysfunction. Due to the lack of appropriate disease models, no efficient therapy for retinitis pigmentosa in USH patients exists so far. In addition, given the yet undefined functional role and expression of the different CLRN1 splice isoforms in the retina, non-causative therapies such as gene supplementation are unsuitable at this stage. In this study, we focused on the recently identified deep intronic c.254-649T>G CLRN1 splicing mutation and aimed to establish two causative treatment approaches: CRISPR-Cas9-mediated excision of the mutated intronic region and antisense oligonucleotide (AON)-mediated correction of mRNA splicing. The therapeutic potential of these approaches was validated in different cell types transiently or stably expressing CLRN1 minigenes. Both approaches led to substantial correction of the splice defect. Surprisingly, however, no synergistic effect was detected when combining both methods. Finally, the injection of naked AONs into mice expressing the mutant CLRN1 minigene in the retina also led to a significant splice rescue. We propose that both AONs and CRISPR-Cas9 are suitable strategies to initiate advanced preclinical studies for treatment of USH3A patients.
Project description:Cystic Fibrosis is an autosomal recessive disorder caused by mutations in the CFTR gene. CRISPR mediated, template-dependent homology-directed gene editing has been used to correct the most common mutation, c.1521_1523delCTT / p.Phe508del (F508del) which affects ~70% of individuals, but the efficiency was relatively low. Here, we describe a high efficiency strategy for editing of three different rare CFTR mutations which together account for about 3% of individuals with Cystic Fibrosis. The mutations cause aberrant splicing of CFTR mRNA due to the creation of cryptic splice signals that result in the formation of pseudoexons containing premature stop codons c.1679+1634A>G (1811+1.6kbA>G) and c.3718-2477C>T (3849+10kbC>T), or an out-of-frame 5' extension to an existing exon c.3140-26A>G (3272-26A>G). We designed pairs of Cas9 guide RNAs to create targeted double-stranded breaks in CFTR either side of each mutation which resulted in high efficiency excision of the target genomic regions via non-homologous end-joining repair. When evaluated in a mini-gene splicing assay, we showed that targeted excision restored normal splicing for all three mutations. This approach could be used to correct aberrant splicing signals or remove disruptive transcription regulatory motifs caused by deep-intronic mutations in a range of other genetic disorders.
Project description:Isoleucyl-tRNA synthetase (IARS) syndrome is a recessive disease of Japanese Black cattle caused by a single nucleotide substitution. To repair the mutated IARS gene, we designed clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) to create a double-strand break near the mutation site. CRISPR/Cas9 and donor DNA that contained a synonymous codon for the correct amino acid and an Aequorea coerulescens Green Fluorescent Protein (AcGFP) cassette with a piggyBac transposase recognition site at both ends were introduced into bovine fetal fibroblast (BFF) cells isolated from a homozygous mutant calf. Recombinant cells were enriched on the basis of expression of AcGFP, and two cell lines that contained the repaired allele were subcloned. We generated somatic cell nuclear transfer (SCNT) embryos from the repaired cells and transferred 22 blastocysts to recipient cows. In total, five viable fetuses were retrieved at Days 34 and 36. PiggyBac transposase mRNA was introduced into BFF cells isolated from cloned foetuses and AcGFP-negative cells were used for second round of cloning. We transferred nine SCNT embryos to recipient cows and retrieved two fetuses at Day 34. Fetal genomic DNA analysis showed correct repair of the IARS mutation without any additional DNA footprint.
Project description:ObjectiveDysferlin is a large transmembrane protein that functions in critical processes of membrane repair and vesicle fusion. Dysferlin-deficiency due to mutations in the dysferlin gene leads to muscular dystrophy (Miyoshi myopathy (MM), limb girdle muscular dystrophy type 2B (LGMD2B), distal myopathy with anterior tibial onset (DMAT)), typically with early adult onset. At least 416 pathogenic dysferlin mutations are known, but for approximately 17% of patients, one or both of their pathogenic variants remain undefined following standard exon sequencing methods that interrogate exons and nearby flanking intronic regions but not the majority of intronic regions.MethodsWe sequenced RNA from myogenic cells to identify a novel dysferlin pathogenic variant in two affected siblings that previously had only one disease-causing variant identified. We designed antisense oligonucleotides (AONs) to bypass the effects of this mutation on RNA splicing.ResultsWe identified a new pathogenic point mutation deep within dysferlin intron 50i. This intronic variant causes aberrant mRNA splicing and inclusion of an additional pseudoexon (PE, we term PE50.1) within the mature dysferlin mRNA. PE50.1 inclusion alters the protein sequence, causing premature translation termination. We identified this mutation in 23 dysferlinopathy patients (seventeen families), revealing it to be one of the more prevalent dysferlin mutations. We used AON-mediated exon skipping to correct the aberrant PE50.1 splicing events in vitro, which increased normal mRNA production and significantly restored dysferlin protein expression.InterpretationDeep intronic mutations can be a common underlying cause of dysferlinopathy, and importantly, could be treatable with AON-based exon-skipping strategies.
Project description:MotivationCRISPR/Cas9 technology has been revolutionizing the field of gene editing in recent years. Guide RNAs (gRNAs) enable Cas9 proteins to target specific genomic loci for editing. However, editing efficiency varies between gRNAs. Thus, computational methods were developed to predict editing efficiency for any gRNA of interest. High-throughput datasets of Cas9 editing efficiencies were produced to train machine-learning models to predict editing efficiency. However, these high-throughput datasets have low correlation with functional and endogenous editing. Another difficulty arises from the fact that functional and endogenous editing efficiency is more difficult to measure, and as a result, functional and endogenous datasets are too small to train accurate machine-learning models on.ResultsWe developed DeepCRISTL, a deep-learning model to predict the on-target efficiency given a gRNA sequence. DeepCRISTL takes advantage of high-throughput datasets to learn general patterns of gRNA on-target editing efficiency, and then uses transfer learning (TL) to fine-tune the model and fit it to the functional and endogenous prediction task. We pre-trained the DeepCRISTL model on more than 150 000 gRNAs, produced through the DeepHF study as a high-throughput dataset of three Cas9 enzymes. We improved the DeepHF model by multi-task and ensemble techniques and achieved state-of-the-art results over each of the three enzymes: up to 0.89 in Spearman correlation between predicted and measured on-target efficiencies. To fine-tune model weights to predict on-target efficiency of functional or endogenous datasets, we tested several TL approaches, with gradual learning being the overall best performer, both when pre-trained on DeepHF and when pre-trained on CRISPROn, another high-throughput dataset. DeepCRISTL outperformed state-of-the-art methods on all functional and endogenous datasets. Using saliency maps, we identified and compared the important features learned by the model in each dataset. We believe DeepCRISTL will improve prediction performance in many other CRISPR/Cas9 editing contexts by leveraging TL to utilize both high-throughput datasets, and smaller and more biologically relevant datasets, such as functional and endogenous datasets.Availability and implementationDeepCRISTL is available via github.com/OrensteinLab/DeepCRISTL.Supplementary informationSupplementary data are available at Bioinformatics online.
Project description:The technique of CRISPR-Cas9 gene editing has been widely used to specifically delete the selected target genes through generating double strand breaks (DSBs) and inducing insertion and/or deletion (indel) of the genomic DNAs in the cells. We recently applied this technique to disrupt mineral dust-induced gene (mdig), a potential oncogene as previously reported, by single guide RNA (sgRNA) targeting the third exon of mdig gene in several cell types, including human bronchial epithelial cell line BEAS-2B, lung cancer cell line A549, and human triple negative breast cancer cell line MDA-MB-231 cells. In addition to the successful knockout of mdig gene in these cells, we unexpectedly noted generation of several alternatively spliced mdig mRNAs. Amplification of the mdig mRNAs during the screening of knockout clones by reverse transcription-polymerase chain reaction (RT-PCR) and the subsequent sanger sequencing of DNA revealed deletion and alternative splicing of mdig mRNAs induced by CRISPR-Cas9 gene editing. The most common deletions include nine and twenty-four nucleotides deletion around the DSBs. In addition, interestingly, some mdig mRNAs showed skipping of the entire exon 3, or alternative splicing between exon 2 and exon 8 using the new donor and accept splicing sites, leading to deletion of exons 3, 4, 5, 6, and 7. Accordingly, cautions should be taken when using CRISPR-Cas9 strategy to edit human genes due to the unintended alterative splicing of the target mRNAs. It is very likely that new proteins, some of which may be highly oncogenic, may be generated from CRISPR-Cas9 gene editing.
Project description:Inherited optic neuropathies (ION) present an important cause of blindness in the European working-age population. Recently we reported the discovery of four independent families with deep intronic mutations in the main inherited optic neuropathies gene OPA1. These deep intronic mutations cause mis-splicing of the OPA1 pre-messenger-RNA transcripts by creating cryptic acceptor splice sites. As a rescue strategy we sought to prevent mis-splicing of the mutant pre-messenger-RNA by applying 2'O-methyl-antisense oligonucleotides (AONs) with a full-length phosphorothioate backbone that target the cryptic acceptor splice sites and the predicted novel branch point created by the deep intronic mutations, respectively. Transfection of patient-derived primary fibroblasts with these AONs induced correct splicing of the mutant pre-messenger-RNA in a time and concentration dependent mode of action, as detected by pyrosequencing of informative heterozygous variants. The treatment showed strong rescue effects (~55%) using the cryptic acceptor splice sites targeting AON and moderate rescue (~16%) using the branch point targeting AON. The highest efficacy of Splice correction could be observed 4 days after treatment however, significant effects were still seen 14 days post-transfection. Western blot analysis revealed increased amounts of OPA1 protein with maximum amounts at ~3 days post-treatment. In summary, we provide the first mutation-specific in vitro rescue strategy for OPA1 deficiency using synthetic AONs.
Project description:Cystic fibrosis (CF) is a monogenic disease caused by impaired production and/or function of the CF transmembrane conductance regulator (CFTR) protein. Although we have previously shown correction of the most common pathogenic mutation, there are many other pathogenic mutations throughout the CF gene. An autologous airway stem cell therapy in which the CFTR cDNA is precisely inserted into the CFTR locus may enable the development of a durable cure for almost all CF patients, irrespective of the causal mutation. Here, we use CRISPR-Cas9 and two adeno-associated viruses (AAVs) carrying the two halves of the CFTR cDNA to sequentially insert the full CFTR cDNA along with a truncated CD19 (tCD19) enrichment tag in upper airway basal stem cells (UABCs) and human bronchial epithelial cells (HBECs). The modified cells were enriched to obtain 60%-80% tCD19+ UABCs and HBECs from 11 different CF donors with a variety of mutations. Differentiated epithelial monolayers cultured at air-liquid interface showed restored CFTR function that was >70% of the CFTR function in non-CF controls. Thus, our study enables the development of a therapy for almost all CF patients, including patients who cannot be treated using recently approved modulator therapies.