Project description:ObjectiveMicroelectrode recording (MER) guided subthalamic nucleus deep brain stimulation (STN-DBS) under local anesthesia (LA) is widely applied in the management of advanced Parkinson's disease (PD). Whereas, awake DBS under LA is painful and burdensome for PD patients. We analyzed the influence of general anesthesia (GA) on intraoperative MER, to assess the feasibility and effectiveness of GA in MER guided STN-DBS.MethodsRetrospective analysis was performed on the PD patients, who underwent bilateral MER guided STN-DBS in Wuhan Union Hospital from July 2019 to December 2021. The patients were assigned to LA or GA group according to the anesthetic methods implemented. Multidimensional parameters, including MER signals, electrode implantation accuracy, clinical outcome and adverse events, were analyzed.ResultsA total of 40 PD patients were enrolled in this study, including 18 in LA group and 22 in GA group. There were no statistically significant differences in patient demographics and baseline characteristics between two groups. Although, the parameters of MER signal, including frequency, inter-spike interval (ISI) and amplitude, were obviously interfered under GA, the waveforms of MER signals were recognizable and shared similar characteristics with LA group. Both LA and GA could achieve effective electrode implantation accuracy and clinical outcome. They also shared similar adverse events postoperatively.ConclusionGA is viable and comparable to LA in MER guided STN-DBS for PD, regarding electrode implantation accuracy, clinical outcome and adverse events. Notably, GA is more friendly and acceptable to the patients who are incapable of enduring intraoperative MER under LA.
Project description:Alongside stereotactic magnetic resonance imaging, microelectrode recording (MER) is frequently used during the deep brain stimulation (DBS) surgery for optimal target localization. The aim of this study is to optimize subthalamic nucleus (STN) mapping using MER analytical patterns. 16 patients underwent bilateral STN-DBS. MER was performed simultaneously for 5 microelectrodes in a setting of Ben's-gun pattern in awake patients. Using spikes and background activity several different parameters and their spectral estimates in various frequency bands including low frequency (2-7 Hz), Alpha (8-12 Hz), Beta (sub-divided as Low_Beta (13-20 Hz) and High_Beta (21-30 Hz)) and Gamma (31 to 49 Hz) were computed. The optimal STN lead placement with the most optimal clinical effect/side-effect ratio accorded to the maximum spike rate in 85% of the implantation. Mean amplitude of background activity in the low beta frequency range was corresponding to right depth in 85% and right location in 94% of the implantation respectively. MER can be used for STN mapping and intraoperative decisions for the implantation of DBS electrode leads with a high accuracy. Spiking and background activity in the beta range are the most promising independent parameters for the delimitation of the proper anatomical site.
Project description:The use of microelectrode recording (MER) during deep brain stimulation (DBS) for Parkinson Disease is controversial. Furthermore, in asleep DBS anesthesia can impair the ability to record single-cell electric activity.The purpose of this study was to describe our surgical and anesthesiologic protocol for MER assessment during asleep subthalamic nucleus (STN) DBS and to put our findings in the context of a systematic review of the literature. Sixty-three STN electrodes were implanted in 32 patients under general anesthesia. A frameless technique using O-Arm scanning was adopted in all cases. Total intravenous anesthesia, monitored with bispectral index, was administered using a target controlled infusion of both propofol and remifentanil. A systematic review of the literature with metanalysis on MER in asleep vs awake STN DBS for Parkinson Disease was performed. In our series, MER could be reliably recorded in all cases, impacting profoundly on electrode positioning: the final position was located within 2 mm from the planned target only in 42.9% cases. Depth modification > 2 mm was necessary in 21 cases (33.3%), while in 15 cases (23.8%) a different track was used. At 1-year follow-up we observed a significant reduction in LEDD, UPDRS Part III score off-medications, and UPDRS Part III score on medications, as compared to baseline. The systematic review of the literature yielded 23 papers; adding the cases here reported, overall 1258 asleep DBS cases using MER are described. This technique was safe and effective: metanalysis showed similar, if not better, outcome of asleep vs awake patients operated using MER. MER are a useful and reliable tool during asleep STN DBS, leading to a fine tuning of electrode position in the majority of cases. Collaboration between neurosurgeon, neurophysiologist and neuroanesthesiologist is crucial, since slight modifications of sedation level can impact profoundly on MER reliability.
Project description:BackgroundBilateral deep brain stimulation of the subthalamic nucleus (STN-DBS) has become a cornerstone in the advanced treatment of Parkinson's disease (PD). Despite its well-established clinical benefit, there is a significant variation in the way surgery is performed. Most centers operate with the patient awake to allow for microelectrode recording (MER) and intraoperative clinical testing. However, technical advances in MR imaging and MRI-guided surgery raise the question whether MER and intraoperative clinical testing still have added value in DBS-surgery.ObjectiveTo evaluate the added value of MER and intraoperative clinical testing to determine final lead position in awake MRI-guided and stereotactic CT-verified STN-DBS surgery for PD.Methods29 consecutive patients were analyzed retrospectively. Patients underwent awake bilateral STN-DBS with MER and intraoperative clinical testing. The role of MER and clinical testing in determining final lead position was evaluated. Furthermore, interobserver variability in determining the MRI-defined STN along the planned trajectory was investigated. Clinical improvement was evaluated at 12 months follow-up and adverse events were recorded.Results98% of final leads were placed in the central MER-track with an accuracy of 0.88±0.45 mm. Interobserver variability of the MRI-defined STN was 0.84±0.09. Compared to baseline, mean improvement in MDS-UPDRS-III, PDQ-39 and LEDD were 26.7±16.0 points (54%) (p < 0.001), 9.0±20.0 points (19%) (p = 0.025), and 794±434 mg/day (59%) (p < 0.001) respectively. There were 19 adverse events in 11 patients, one of which (lead malposition requiring immediate postoperative revision) was a serious adverse event.ConclusionMER and intraoperative clinical testing had no additional value in determining final lead position. These results changed our daily clinical practice to an asleep MRI-guided and stereotactic CT-verified approach.
Project description:ObjectiveTo compare the efficacy of subthalamic nucleus (STN) and globus pallidus internus (GPi) deep brain stimulation (DBS) on reducing levodopa-induced dyskinesia (LID) in Parkinson's disease, and to explore the potential underlying mechanisms.MethodsWe retrospectively assessed clinical outcomes in 43 patients with preoperative LID who underwent DBS targeting the STN (20/43) or GPi (23/43). The primary clinical outcome was the change from baseline in the Unified Dyskinesia Rating Scale (UDysRS) and secondary outcomes included changes in the total daily levodopa equivalent dose, the drug-off Unified Parkinson Disease Rating Scale Part Ⅲ at the last follow-up (median, 18 months), adverse effects, and programming settings. Correlation analysis was used to find potential associated factors that could be used to predict the efficacy of DBS for dyskinesia management.ResultsCompared to baseline, both the STN group and the GPi group showed significant improvement in LID with 60.73 ± 40.29% (mean ± standard deviation) and 93.78 ± 14.15% improvement, respectively, according to the UDysRS score. Furthermore, GPi-DBS provided greater clinical benefit in the improvement of dyskinesia (P < 0.05) compared to the STN. Compared to the GPi group, the levodopa equivalent dose reduction was greater in the STN group at the last follow-up (43.81% vs. 13.29%, P < 0.05). For the correlation analysis, the improvement in the UDysRS outcomes were significantly associated with a reduction in levodopa equivalent dose in the STN group (r = 0.543, P = 0.013), but not in the GPi group (r = -0.056, P = 0.801).InterpretationBoth STN and GPi-DBS have a beneficial effect on LID but GPi-DBS provided greater anti-dyskinetic effects. Dyskinesia suppression for STN-DBS may depend on the reduction of levodopa equivalent dose. Unlike the STN, GPi-DBS might exert a direct and independent anti-dyskinesia effect.
Project description:Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is an effective surgical treatment for Parkinson's disease (PD). Side-effects may, however, be induced when the DBS lead is placed suboptimally. Currently, lower field magnetic resonance imaging (MRI) at 1.5 or 3 Tesla (T) is used for targeting. Ultra-high-field MRI (7 T and above) can obtain superior anatomical information and might therefore be better suited for targeting. This study aims to test whether optimized 7 T imaging protocols result in less variable targeting of the STN for DBS compared to clinically utilized 3 T images. Three DBS-experienced neurosurgeons determined the optimal STN DBS target site on three repetitions of 3 T-T2, 7 T-T2*, 7 T-R2* and 7 T-QSM images for five PD patients. The distance in millimetres between the three repetitive coordinates was used as an index of targeting variability and was compared between field strength, MRI contrast and repetition with a Bayesian ANOVA. Further, the target coordinates were registered to MNI space, and anatomical coordinates were compared between field strength, MRI contrast and repetition using a Bayesian ANOVA. The results indicate that the neurosurgeons are stable in selecting the DBS target site across MRI field strength, MRI contrast and repetitions. The analysis of the coordinates in MNI space however revealed that the actual selected location of the electrode is seemingly more ventral when using the 3 T scan compared to the 7 T scans.
Project description:ObjectiveIntraoperative microelectrode recording (MER) and test-stimulation are regarded as the gold standard for proper placement of subthalamic (STN) deep brain stimulation (DBS) electrodes in Parkinson's disease (PD), requiring the patient to be awake during the procedure. In accordance with good clinical practice, most attending neurologists will request the clinically most efficacious trajectory for definite lead placement. However, the necessity of microelectrode-test-stimulation is disputed, as it may limit the access to DBS therapy, excluding those not willing or incapable of undergoing awake surgery.MethodsWe retrospectively analyzed the MERs and microelectrode-test-stimulation results with regard to the decision on definite lead placement and clinical outcome in a cohort of 67 PD-patients with STN-DBS. All patients received bilateral quadripolar ring electrodes. To ascertain overall procedural efficacy, we calculated the surgical index (SI) by comparing preoperative motor improvement induced by levodopa to that induced by stimulation 7 to 18 months after surgery, measured as the relative difference between ON and OFF-states on the Unified Parkinson's Disease Rating Scale motor part (UPDRS-3). Additionally, a side-specific surgical index (SSSI) was calculated using the unilateral assessable items of the UPDRS-3. The SSSI where microelectrode-test-stimulation overruled MER were compared to those where the result of microelectrode-test-stimulation was congruent to MER results.ResultsA total of 134 electrodes were analyzed. For final lead placement, the central trajectory was chosen in 54% of patient hemispheres. The mean SI was 0.99 (± 0.24). SSSI averaged 1.04 (± 0.45). In 37 lead placements, microelectrode-test-stimulation overruled MER in the final trajectory selection, in 27 of these lead placements adverse effects during microelectrode-test-stimulation were decisive. Neither the number of test electrodes used nor the STN-signal length had an impact on the SSSI. The SSSI did not differ between lead placements with MER/microelectrode-test-stimulation congruency and those where the results of microelectrode-test-stimulation initiated lead placement in a trajectory with shorter STN signal.ConclusionIntraoperative testing is mandatory to ensure an optimal motor outcome of STN DBS in PD-patients when using quadripolar ring electrodes. However, we also demonstrated that neither the length of the STN-signal on MER nor the number of test electrodes influenced the motor outcome.
Project description:The clinical benefit of deep brain stimulation (DBS) for Parkinson's disease (PD) is relevant to the tracts adjacent to the stimulation site, but it remains unclear what connectivity pattern is associated with effective DBS. The aim of this study was to identify clinically effective electrode contacts on the basis of brain connectivity markers derived from diffusion tensor tractography. We reviewed 77 PD patients who underwent bilateral subthalamic nucleus DBS surgery. The patients were assigned into the training (n = 58) and validation (n = 19) groups. According to the therapeutic window size, all contacts were classified into effective and ineffective groups. The whole-brain connectivity of each contact's volume of tissue activated was estimated using tractography with preoperative diffusion tensor data. Extracted connectivity features were put into an all-relevant feature selection procedure within cross-validation loops, to identify features with significant discriminative power for contact classification. A total of 616 contacts on 154 DBS leads were discriminated, with 388 and 228 contacts being classified as effective and ineffective ones, respectively. After the feature selection, the connectivity of contacts with the thalamus, pallidum, hippocampus, primary motor area, supplementary motor area and superior frontal gyrus was identified to significantly contribute to contact classification. Based on these relevant features, the random forest model constructed from the training group achieved an accuracy of 84.9% in the validation group, to discriminate effective contacts from the ineffective. Our findings advanced the understanding of the specific brain connectivity patterns associated with clinical effective electrode contacts, which potentially guided postoperative DBS programming.
Project description:Deep brain stimulation therapy is an effective symptomatic treatment for Parkinson's disease, yet the precise mechanisms responsible for its therapeutic effects remain unclear. Although the targets of deep brain stimulation are grey matter structures, axonal modulation is known to play an important role in deep brain stimulation's therapeutic mechanism. Several white matter structures in proximity to the subthalamic nucleus have been implicated in the clinical benefits of deep brain stimulation for Parkinson's disease. We assessed the connectivity patterns that characterize clinically beneficial electrodes in Parkinson's disease patients, after deep brain stimulation of the subthalamic nucleus. We evaluated 22 patients with Parkinson's disease (11 females, age 57 ± 9.1 years, disease duration 13.3 ± 6.3 years) who received bilateral deep brain stimulation of the subthalamic nucleus at the National Institutes of Health. During an initial electrode screening session, one month after deep brain stimulation implantation, the clinical benefits of each contact were determined. The electrode was localized by coregistering preoperative magnetic resonance imaging and postoperative computer tomography images and the volume of tissue activated was estimated from stimulation voltage and impedance. Brain connectivity for the volume of tissue activated of deep brain stimulation contacts was assessed using probabilistic tractography with diffusion-tensor data. Areas most frequently connected to clinically effective contacts included the thalamus, substantia nigra, brainstem and superior frontal gyrus. A series of discriminant analyses demonstrated that the strength of connectivity to the superior frontal gyrus and the thalamus were positively associated with clinical effectiveness. The connectivity patterns observed in our study suggest that the modulation of white matter tracts directed to the superior frontal gyrus and the thalamus is associated with favourable clinical outcomes and may contribute to the therapeutic effects of deep brain stimulation. Our method can be further developed to reliably identify effective deep brain stimulation contacts and aid in the programming process.
Project description:ObjectivesUnilateral subthalamic nucleus (STN) deep brain stimulation (DBS) for Parkinson's disease (PD) improves ipsilateral symptoms, but how this occurs is not well understood. We investigated whether unilateral STN DBS suppresses contralateral STN beta activity in the local field potential (LFP), since previous research has shown that activity in the beta band can correlate with the severity of contralateral clinical symptoms and is modulated by DBS.Materials and methodsWe recorded STN LFPs from 14 patients who underwent bilateral STN DBS for PD. Following a baseline recording, unilateral STN stimulation was delivered at therapeutic parameters while LFPs were recorded from the contralateral (unstimulated) STN.ResultsUnilateral STN DBS suppressed contralateral beta power (p = 0.039, relative suppression = -5.7% ± [SD] 16% when averaging across the highest beta peak channels; p = 0.033, relative suppression = -5.2% ± 13% when averaging across all channels). Unilateral STN DBS produced a 17% ipsilateral (p = 0.016) and 29% contralateral (p = 0.002) improvement in upper limb hemi-body bradykinesia-rigidity (UPDRS-III, items 3.3-3.6). The ipsilateral clinical improvement and the change in contralateral beta power were not significantly correlated.ConclusionsUnilateral STN DBS suppresses contralateral STN beta LFP. This indicates that unilateral STN DBS modulates bilateral basal ganglia networks. It remains unclear whether this mechanism accounts for the ipsilateral motor improvements.