Project description:Lung cancer is the leading cause of cancer death in males and the second leading cause of death in females worldwide. Non-small-cell lung cancer (NSCLC) is the main pathological type of lung cancer, and most newly diagnosed NSCLC patients cannot undergo surgery because the disease is already locally advanced or metastatic. Despite chemoradiotherapy and targeted therapy improving clinical outcomes, overall survival remains poor. Immune checkpoint blockade, especially blockade of programmed death-1 (PD-1) receptor and its ligand PD-L1, achieved robust responses and improved survival for patients with locally advanced/metastatic NSCLC in preclinical and clinical studies. However, with regard to PD-1/PD-L1 checkpoint blockade as monotherapy or in combination with other antitumor therapies, such as chemotherapy, radiotherapy (including conventional irradiation and stereotactic body radiotherapy), and target therapy, there are still many unknowns in treating patients with NSCLC. Despite this limited understanding, checkpoint blockade as a novel therapeutic approach may change the treatment paradigm of NSCLC in the future. Here we review the main results from completed and ongoing studies to investigate the feasibility of PD-1/PD-L1 inhibitors, as monotherapy or combinatorial agents in patients with locally advanced and metastatic NSCLC, and explore optimal strategy in such patients.
Project description:Targeted immunotherapy based on PD-1/PD-L1 suppression has revolutionized the treatment of various solid tumors. A remarkable improvement has also been observed in the treatment of patients with refractory/relapsing classical Hodgkin lymphoma (cHL). We investigated PD-L1 status in a variety of treatment resistant lymphomas. Tumor samples from 78 patients with therapy resistant lymphomas were immunohistochemically (IHC) investigated for the expression of PD-L1 using two antibody clones (SP142 and SP263, Ventana). Thirteen PD-L1+ cases were further analyzed for gene copy number variations (CNV) by NGS and for PD-L1/JAK2/PD-L2 co-amplification using fluorescent in-situ hybridization assay (FISH). PD-L1 positivity (≥5% positive cancer cells, IHC) was present in 32/77 (42%) and 33/71 cases (46%) using SP142 and SP263 antibodies, respectively. Concordance between the two anti-PD-L1 clones was high with only three (4%) discrepant cases. The strongest and consistent (10/11 cases) expression was observed in cHL and primary mediastinal B-cell lymphomas (3/3). Diffuse large B-cell lymphomas (DLBCL) were frequently positive (13/26) irrespective of subtype. Follicular (1/8), peripheral T-cell (3/11) and mantle cell (1/8) lymphomas were rarely positive, while small lymphocytic lymphoma/CLL and marginal zone lymphomas were consistently negative (3/3). Co-amplification/CNVs of PD-L1/JAK2/PD-L2 were observed in 3 cases of DLBCL and cHL, respectively. Of note, all three cHL-amplified cases were positive by FISH, but not by NGS. Since only a fraction of the IHC positive lymphoma cases were positive by FISH and NGS assays, other mechanisms are involved in PD-L1 upregulation, especially in DLBCL. FISH assay may be more suitable than NGS assay for determination of PD-L1 alterations in cHL.
Project description:Clinically, programmed death-1 (PD-1) blockades have demonstrated promising therapeutic outcomes for patients with advanced non-small cell lung cancer (NSCLC). The present study aimed to examine the impact of programmed death-ligand 1 (PD-L1) polymorphism on clinical outcomes of patients with advanced NSCLC who were treated with PD-1 blockades therapy. The present study was designed as a retrospective analysis, where a consecutive screening of 89 patients with advanced NSCLC who received PD-1 blockades monotherapy were screened. Biological specimens were collected to determine the presence of polymorphism and PD-L1 mRNA expression through genotyping. The analysis focused on examining the relationship between the genotype status of PD-L1 polymorphism and clinical outcomes. Among the 89 patients with advanced NSCLC, the use of PD-1 blockades monotherapy resulted in objective response rate (ORR) of 22.5%, a median progression-free survival (PFS) of 3.4 months [95% Confidence Interval (CI): 1.80-5.00) and a median overall survival (OS) of 11.3 months (95% CI: 7.93-14.67). The analysis of polymorphism indicated that only rs2297136 had clinical significance. Among the 89 patients with NSCLC, the prevalence of rs2297136 was as follows: A total of 58 cases (65.2%) had the AA genotype, 28 cases (31.5%) had the AG genotype and 3 cases (3.4%) had the GG genotype. This resulted in a minor allele frequency of 0.19, which was in consistent with Hardy-Weinberg Equilibrium (P=0.865). The correlation analysis between genotype status of rs2297136 and clinical outcomes indicated that patients with the AA genotype had an ORR of 19.0%, while those with the AG/GG genotype had an ORR of 29.0% (P=0.278). Additionally, the median PFS for the AA genotype was 2.95 months, compared with 5.30 months for the AG/GG genotype (P=0.038). Accordingly, median OS of the AA and AG/GG genotypes was 8.8 and 18.4 months, respectively (P=0.011). The mRNA expression of PD-L1 was significantly higher in patients with AG/GG genotype compared with those with AA genotype (P<0.001). In clinical practice, PD-1 blockades demonstrated promising effectiveness in treating patients with advanced NSCLC. The presence of the rs2297136 variant in PD-L1 gene could potentially be used as a biomarker to predict the clinical outcomes of PD-1 blockades.
Project description:The efficacy of PD-1/PD-L1 blockades is heterogeneous in different molecular subtypes of gastric cancer (GC). In this study, we analyzed relevant clinical trials to identify the molecular subtypes associated with the efficacy of PD-1/PD-L1 blockades, and public datasets, patient samples, and GC cell lines were used for investigating potential mechanisms. We found that GC with EBV-positive, MSI-H/dMMR, TMB-H or PIK3CA mutant subtype had enhanced efficacy of PD-L1/PD-1 blockades. Also, differentially expressed genes of these molecular subtypes shared the same gene signature and functional annotations related to immunity. Meanwhile, CIBERSORT identified that the overlapping landscapes of tumor-infiltrating immune cells in the four molecular subtypes were mainly M1-like macrophages (M1). The relationships between M1 and clinical characteristics, M1, and gene signatures associated with PD-1/PD-L1 blockades also revealed that M1 was associated with improved prognosis and required for the efficacy of PD-L1/PD-1 blockades in GC. We identified that tumor-infiltrating CD68+CD163- macrophages could represent M1 calculated by CIBERSORT in clinical application, and CXCL9, 10, 11/CXCR3 axis was involved in the mechanism of CD68+CD163- macrophages in the enhanced efficacy of PD-L1/PD-1 blockades. In conclusion, CD68+CD163- macrophages are required for the efficacy of PD-L1/PD-1 blockades and expand the applicable candidates in GC patients without the molecular subtypes.
Project description:With the widespread use of PD-1/PD-L1 monoclonal antibodies (mAbs) in the treatment of multiple malignant tumors, they were also gradually applied to advanced renal cell carcinoma (aRCC). Nowadays, multiple PD-1/PD-L1 mAbs, such as nivolumab, avelumab, and pembrolizumab, have achieved considerable efficacy in clinical trials. However, due to the primary, adaptive, and acquired resistance to these mAbs, the efficacy of this immunotherapy is not satisfactory. Theories also vary as to why the difference in efficacy occurs. The alterations of PD-L1 expression and the interference of cellular immunity may affect the efficacy. These mechanisms demand to be revealed to achieve a sustained and complete objective response in patients with aRCC. Tyrosine kinase inhibitors have been proven to have synergistic mechanisms with PD-1/PD-L1 mAb in the treatment of aRCC, and CTLA-4 mAb has been shown to have a non-redundant effect with PD-1/PD-L1 mAb to enhance efficacy. Although combinations with targeted agents or other checkpoint mAbs have yielded enhanced clinical outcomes in multiple clinical trials nowadays, the potential of PD-1/PD-L1 mAbs still has a large development space. More potential mechanisms that affect the efficacy demand to be developed and transformed into the clinical treatment of aRCC to search for possible combination regimens. We elucidate these mechanisms in RCC and present existing combination therapies applied in clinical trials. This may help physicians' select treatment options for patients with refractory kidney cancer.
Project description:Monoclonal antibodies (mAbs) that block the programmed death 1 (PD-1) or programmed death-ligand 1 (PD-L1) receptors are the most clinically advanced tumor immunotherapies. Given the broad antitumor efficacy and novel mechanism of action, numerous combinatorial approaches incorporating PD-1/PD-L1 blockade have been suggested; herein we present a comprehensive analysis of these clinical trials. We queried clinicaltrials.gov for all PD-1/PD-L1 mAbs administered for cancer therapy with an end date of 4/30/2017. A total of 1,218 clinical trials met our search criteria. These trials have a planned enrollment of 227,190 patients, and approximately half (493) were initiated in 2016 alone. Of these over 1,200 trials, 916 combine PD-1/PD-L1 blockade with at least one additional therapy, ranging from traditional treatment modalities like surgery and chemoradiation to newer therapies like small molecule inhibitors and other immunotherapies. The staggering proliferation of clinical trials combining PD-1/PD-L1 blockade with disparate treatments necessitates careful accounting to maximize efficiency and highlight areas of unmet needs. We believe our analysis provides this data and expect it will facilitate the design of future clinical trials in this burgeoning area of oncology research.
Project description:The programmed death-ligands, PD-L1 and PD-L2, reside on tumor cells and can bind with programmed death-1 protein (PD-1) on T-cells, resulting in tumor immune escape. PD-1 ligands are highly expressed in some CD30+ large cell lymphomas, including classic Hodgkin lymphoma (CHL), primary mediastinal large B-cell lymphoma (PMBL), Epstein-Barr virus (EBV)-positive diffuse large B-cell lymphoma (EBV+ DLBCL), and anaplastic large cell lymphoma (ALCL). The genetic alteration of the chromosome 9p24.1 locus, the location of PD-L1, PD-L2, and JAK2 are the main mechanisms leading to PD-L1 and PD-L2 overexpression and are frequently observed in these CD30+ large cell lymphomas. The JAK/STAT pathway is also commonly constitutively activated in these lymphomas, further contributing to the upregulated expression of PD-L1 and PD-L2. Other mechanisms underlying the overexpression of PD-L1 and PD-L2 in some cases include EBV infection and the activation of the mitogen-activated protein kinase (MAPK) pathway. These cellular and molecular mechanisms provide a scientific rationale for PD-1/PD-L1 blockade in treating patients with relapsed/refractory (R/R) disease and, possibly, in newly diagnosed patients. Given the high efficacy of PD-1 inhibitors in patients with R/R CHL and PMBL, these agents have become a standard treatment in these patient subgroups. Preliminary studies of PD-1 inhibitors in patients with R/R EBV+ DLBCL and R/R ALCL have also shown promising results. Future directions for these patients will likely include PD-1/PD-L1 blockade in combination with other therapeutic agents, such as brentuximab or traditional chemotherapy regimens.
Project description:BackgroundProgrammed death-1 (PD-1) and programmed death-ligand 1 (PD-L1) blockade immunotherapies have changed the landscape of cancer therapy. However, the main limitation of these therapies is the lack of definitively predictive biomarkers to predict treatment response. Whether PD-L1 expression on circulating tumor cells (CTCs) is associated with the clinical outcomes of immunotherapy remains to be extensively investigated.Materials and methodsOne hundred fifty-five patients with different advanced cancers were enrolled in this study and treated with anti-PD-1/PD-L1 monoclonal antibodies. Using the Pep@MNPs method, CTCs were isolated and enumerated. The PD-L1 expression levels were analyzed by an immunofluorescence assay for semiquantitative assessment with four categories (negative, low, medium, and high).ResultsPrior to immunotherapy, 81.93% (127/155) of patients had PD-L1-positive CTCs, and 71.61% (111/155) had at least one PD-L1-high CTC. The group with PD-L1-positive CTCs had a higher disease control rate (DCR) (71.56%, 91/127), with a DCR of only 39.29% (11/28) for the remaining individuals (p = .001). The objective response rate and DCR in PD-L1-high patients were higher than those in the other patients (32.44% vs. 13.64%, p = .018 and 75.68% vs. 40.91%, p < .0001, respectively). The reduction in the counts and ratios of PD-L1-positive CTCs and PD-L1-high CTCs reflected a beneficial response to PD-1/PD-L1 inhibitors. Furthermore, patients with PD-L1-high CTCs had significantly longer progression-free survival (4.9 vs. 2.2 months, p < .0001) and overall survival (16.1 vs. 9.0 months, p = .0235) than those without PD-L1-high CTCs.ConclusionThe PD-L1 level on CTCs may serve as a clinically actionable biomarker for immunotherapy, and its dynamic changes could predict the therapeutic response.Implications for practiceThis study was designed to investigate the role of programmed death-ligand 1 (PD-L1) expression on circulating tumor cells in predicting and monitoring response to programmed death-1 (PD-1)/PD-L1 blockade immunotherapies in patients with advanced cancer. The results of the study showed that PD-L1-high-expression circulating tumor cells (CTCs) were both a predictive biomarker and a prognostic factor in patients with advanced cancer treated with anti-PD-1/PD-L1 monoclonal antibodies. These observations suggest that PD-L1 level on CTCs is a potential clinical biomarker for immunotherapy.
Project description:Oncolytic viruses are lytic for many types of cancers but are attenuated or replication-defective in normal tissues. Aside from tumor lysis, oncolytic viruses can induce host immune responses against cancer cells and may thus be viewed as a form of immunotherapy. Although recent successes with checkpoint inhibitors have shown that enhancing antitumor immunity can be effective, the dynamic nature of the immunosuppressive tumor microenvironment presents significant hurdles to the broader application of these therapies. Targeting one immune-suppressive pathway may not be sufficient to eliminate tumors. Here we focus on the development of the combination of oncolytic virotherapy with checkpoint inhibitors designed to target the programmed cell death protein 1 and programmed cell death ligand 1 signaling axis. We also discuss future directions for the clinical application of this novel combination therapy.
Project description:ObjectivesTo evaluate the efficacy of immuno-oncology combinational therapy (IOCT) versus monotherapy with programmed cell death 1 (PD-1) or PD-ligand 1 (PD-L1) inhibitors or conventional therapies, i.e., non-IOCT, in patients with advanced solid tumors.MethodsWe systematically searched the PubMed, Embase, and Cochrane Library databases from January 2015 to October 2018 for eligible studies. We included randomized trials of IOCT with available hazard ratios (HR) for death. The random effects model was used to calculate pooled HR for death; heterogeneity was assessed using I 2 statistics. The main outcome measure was overall survival (OS).ResultsAfter screening 483 relevant articles, we identified twelve trials comprising 5388 patients for quantitative analysis. IOCT-treated patients had significantly higher tumor response rate (relative risk (RR): 2.51, 95% confidence interval (CI): 1.82-3.47), prolonged progression-free survival (HR 0.62, 95% CI: 0.53-0.74), and OS (HR 0.69, 95% CI: 0.61-0.78), compared with non-IOCT-treated patients. Sensitivity analyses also demonstrated the OS advantage of IOCT across different combination modalities, intervention agents, malignancy types, and PD-L1 expression (all P < 0.05). Notably, there were higher odds of high-grade (grade ≥ 3) adverse events with IOCT (RR: 1.81, 95% CI: 1.13-2.90), but the risk of treatment-related death (RR: 1.16, 95% CI: 0.84-1.60) was not increased compared with non-IOCT.ConclusionsIOCT is a preferable treatment option over PD-1/PD-L1 inhibitor monotherapy and conventional therapy for patients with advanced solid tumors. However, we should note the increased incidence rate of high-grade AEs in IOCT.