Ontology highlight
ABSTRACT: Significance statement
Heart disease can be caused by inherited mutations in beta-cardiac myosin, the molecular motor that powers systolic contraction in the ventricles of the heart. However, it remains unclear how these mutations lead to contractile dysfunction and pathogenic remodeling of the heart. We investigated a unique dilated cardiomyopathy mutation (E525K) that dramatically stabilizes the autoinhibited state while enhancing intrinsic motor function. Thus, we examined how this mutation impacts transient kinetic steps of the ATPase cycle, motile properties, and structural changes associated with the power stroke and phosphate release. Our results provide a kinetic and structural basis for how beta-cardiac myosin mutations may disrupt molecular-level contractile function in complex ways, which may inform the development of targeted therapeutics.
SUBMITTER: Bodt SML
PROVIDER: S-EPMC10680644 | biostudies-literature | 2023 Nov
REPOSITORIES: biostudies-literature
bioRxiv : the preprint server for biology 20231113
Inherited mutations in human beta-cardiac myosin (M2β) can lead to severe forms of heart failure. The E525K mutation in M2β is associated with dilated cardiomyopathy (DCM) and was found to stabilize the interacting heads motif (IHM) and autoinhibited super-relaxed (SRX) state in dimeric heavy meromyosin. However, in monomeric M2β subfragment 1 (S1) we found that E525K enhances (3-fold) the maximum steady-state actin-activated ATPase activity (<i>k</i><sub>cat</sub>) and decreases (6-fold) the ac ...[more]