Ontology highlight
ABSTRACT: Background
Tacrolimus (TAC) is the mainstay of immunosuppressive regimen for kidney transplantations. Its clinical use is complex due to high inter-individual variations which can be partially attributed to genetic variations at the metabolizing enzymes CYP3A4 and CYP3A5. Two single nucleotide polymorphisms (SNPs), CYP3A4*22 and CYP3A5*3, have been reported as important causes of differences in pharmacokinetics that can affect efficacy and/or toxicity of TAC.Objective
Investigating the effect of CYP3A4*22 and CYP3A5*3 SNPs individually and in combination on the TAC concentration in Egyptian renal recipients.Methods
Overall, 72 Egyptian kidney transplant recipients were genotyped for CYP3A4*22 G>A and CYP3A5*3 T>C. According to the functional defect associated with CYP3A variants, patients were clustered into: poor (PM) and non-poor metabolizers (Non-PM). The impact on dose adjusted through TAC concentrations (C0) and daily doses at different time points after transplantation was evaluated.Results
Cyp3A4*1/*22 and PM groups require significantly lower dose of TAC (mg/kg) at different time points with significantly higher concentration/dose (C0/D) ratio at day 10 in comparison to Cyp3A4*1/*1 and Non-PM groups respectively. However, CyP3A5*3 heterozygous individuals did not show any significant difference in comparison to CyP3A5*1/*3 individuals. By comparing between PM and Non-PM, the PM group had a significantly lower rate of recipients not reaching target C0 at day 14.Conclusion
This is the first study on Egyptian population to investigate the impact of CYP3A4*22 and CYP3A5*3 SNPs individually and in combination on the TAC concentration. This study and future multicenter studies can contribute to the individualization of TAC dosing in Egyptian patients.
SUBMITTER: Wanas H
PROVIDER: S-EPMC10681408 | biostudies-literature | 2023 Oct
REPOSITORIES: biostudies-literature
Journal of clinical laboratory analysis 20231003 19-20
<h4>Background</h4>Tacrolimus (TAC) is the mainstay of immunosuppressive regimen for kidney transplantations. Its clinical use is complex due to high inter-individual variations which can be partially attributed to genetic variations at the metabolizing enzymes CYP3A4 and CYP3A5. Two single nucleotide polymorphisms (SNPs), CYP3A4*22 and CYP3A5*3, have been reported as important causes of differences in pharmacokinetics that can affect efficacy and/or toxicity of TAC.<h4>Objective</h4>Investigati ...[more]