Project description:This study aimed to examine the validity and accuracy of wrist accelerometers for classifying sedentary behavior (SB) in children.Fifty-seven children (5-8 and 9-12 yr) completed an ~170-min protocol, including 15 semistructured activities and transitions. Nine ActiGraph (GT3X+) and two GENEActiv wrist cut points were evaluated. Direct observation was the criterion measure. The accuracy of wrist cut points was compared with that achieved by the ActiGraph hip cut point (?25 counts per 15 s) and the thigh-mounted activPAL3. Analyses included equivalence testing, Bland-Altman procedures, and area under the receiver operating curve (ROC-AUC).The most accurate ActiGraph wrist cut points (Kim; vector magnitude, ?3958 counts per 60 s; vertical axis, ?1756 counts per 60 s) demonstrated good classification accuracy (ROC-AUC = 0.85-0.86) and accurately estimated SB time in 5-8 yr (equivalence P = 0.02; mean bias = 4.1%, limits of agreement = -20.1% to 28.4%) and 9-12 yr (equivalence P < 0.01; -2.5%, -27.9% to 22.9%). The mean bias of SB time estimates from Kim were smaller than ActiGraph hip (5-8 yr: 15.8%, -5.7% to 37.2%; 9-12 yr: 17.8%, -3.9% to 39.5%) and similar to or smaller than activPAL3 (5-8 yr: 12.6%, -39.8% to 14.7%; 9-12 yr: -1.4%, -13.9% to 11.0%), although classification accuracy was similar to ActiGraph hip (ROC-AUC = 0.85) but lower than activPAL3 (ROC-AUC = 0.92-0.97). Mean bias (5-8 yr: 6.5%, -16.1% to 29.1%; 9-12 yr: 10.5%, -13.6% to 34.6%) for the most accurate GENEActiv wrist cut point (Schaefer: ?0.19 g) was smaller than ActiGraph hip, and activPAL3 in 5-8 yr, but larger than activPAL3 in 9-12 yr. However, SB time estimates from Schaefer were not equivalent to direct observation (equivalence P > 0.05) and classification accuracy (ROC-AUC = 0.79-0.80) was lower than for ActiGraph hip and activPAL3.The most accurate SB ActiGraph (Kim) and GENEActiv (Schaefer) wrist cut points can be applied in children with similar confidence as the ActiGraph hip cut point (?25 counts per 15 s), although activPAL3 was generally more accurate.
Project description:The purpose of this study was to establish GENEA (Gravity Estimator of Normal Everyday Activity) cut-points for discriminating between six relative-intensity activity levels in middle-aged recreational marathoners. Nighty-eight (83 males and 15 females) recreational marathoners, aged 30-45 years, completed a cardiopulmonary exercise test running on a treadmill while wearing a GENEA accelerometer on their non-dominant wrist. The breath-by-breath V̇O2 data was also collected for criterion measure of physical activity categories (sedentary, light, moderate, vigorous, very vigorous and extremely vigorous). GENEA cut-points for physical activity classification was performed via Receiver Operating Characteristic (ROC) analysis. Spearman's correlation test was applied to determine the relationship between estimated and measured intensity classifications. Statistical analysis were done for all individuals, and separating samples by sex. The GENEA cut-points established were able to distinguish between all six-relative intensity levels with an excellent classification accuracy (area under the ROC curve (AUC) values between 0.886 and 0.973) for all samples. When samples were separated by sex, AUC values were 0.881-0.973 and 0.924-0.968 for males and females, respectively. The total variance in energy expenditure explained by GENEA accelerometer data was 78.50% for all samples, 78.14% for males, and 83.17% for females. In conclusion, the wrist-worn GENEA accelerometer presents a high capacity of classifying the intensity of physical activity in middle-aged recreational marathoners when examining all samples together, as well as when sample set was separated by sex. This study suggests that the triaxial GENEA accelerometers (worn on the non-dominant wrist) can be used to predict energy expenditure for running activities.
Project description:PurposePhysical activity (PA) intensity is expressed as either absolute or relative intensity. Absolute intensity refers to the energy required to perform an activity. Relative intensity refers to a level of effort that takes into account how hard an individual is working relative to their maximum capacity. We sought to develop methods for obtaining individualized relative-intensity accelerometer cut points using data from a maximal graded exercise treadmill test (GXT) so that each individual has their own cut point.MethodsA total of 2363 men and women 38 to 50 yr old from the CARDIA fitness study wore ActiGraph 7164 accelerometers during a maximal GXT and for seven consecutive days in 2005-2006. Using mixed-effects regression models, we regressed accelerometer counts on heart rate as a percentage of maximum (%HRmax) and on RPE. Based on these two models, we obtained a moderate-intensity (%HRmax = 64% or RPE = 12) count cut point that is specific to each participant. We applied these subject-specific cut points to the available CARDIA accelerometer data.ResultsUsing RPE, the mean moderate-intensity accelerometer cut point was 4004 (SD = 1120) counts per minute. On average, cut points were higher for men (4189 counts per minute) versus women (3865 counts per minute) and were higher for Whites (4088 counts per minute) versus African Americans (3896 counts per minute). Cut points were correlated with body mass index (rho = -0.11) and GXT duration (rho = 0.33). Mean daily minutes of absolute- and relative-intensity moderate to vigorous PA were 34.1 (SD = 31.1) min·d and 9.1 (SD = 18.2) min·d, respectively. RPE cut points were higher than those based on %HRmax. This is likely due to some participants ending the GXT before achieving their HRmax.ConclusionsAccelerometer-based relative-intensity PA may be a useful measure of intensity relative to maximal capacity.
Project description:The objective of this paper is to derive a wrist-placed cut-point threshold for distinguishing sedentary behaviors from light-intensity walking using the ActiGraph GT3X+ in children. This study employed a cross-sectional study design, typically used in measurement-related studies. A sample of 167 children, ages 5⁻11 years (mean ± SD: 8.0 ± 1.8 years), performed up to eight seated sedentary activities while wearing accelerometers on both wrists. Activities included: reading books, sorting cards, cutting and pasting, playing board games, eating snacks, playing with tablets, watching TV, and writing. Direct observation verified sedentary behavior from light activity. Receiver operator characteristic (ROC) analyses were used to determine optimal cut-point thresholds. Quantile regression models estimated differences between dominant and non-dominant placement. The optimal cut-point threshold for the non-dominant wrist was 203 counts/5 s with sensitivity, specificity, and area under the curve (AUC) of 71.56, 70.83, and 0.72, respectively. A 10-fold cross-validation revealed an average AUC of 0.70. Statistically significant (p ≤ 0.05) differences in median counts ranging from 7 to 46 counts/5 s were found between dominant and non-dominant placement in five out of eight sedentary activities, with the dominant wrist eliciting higher counts/5 s. Results from this study support the recommendation to place accelerometers on the non-dominant wrist to minimize "noise" during seated sedentary behaviors.
Project description:There is no general consensus regarding which accelerometer cut-off point (CoP) is most acceptable to estimate the time spent in moderate-to-vigorous physical activity (MVPA) in children and choice of an appropriate CoP primarily remains a subjective decision. Therefore, this study aimed to analyze the influence of CoP selection on the mean MVPA and to define the optimal thresholds of MVPA derived from different accelerometer CoPs to avoid overweight/obesity and adiposity in children aged 7 to 12 years. Three hundred six children participated. Physical activity (PA) was monitored for seven consecutive days using an ActiGraph accelerometer (model GT3X) and the intensity of PA was estimated using the five most frequently published CoPs. Body adiposity was assessed using a multi-frequency bioelectrical impedance analysis. There was found a wide range of mean levels of MVPA that ranged from 27 (Puyau CoP) to 231 min∙d-1 (Freedson 2005 CoP). A receiver operating characteristic curve analysis indicated that the optimal thresholds for counts per minute (cpm) and MVPA derived from the Puyau CoP was the most useful in classifying children according to their body mass index (BMI) and fat mass percentage (FM%). In the total sample, the optimal thresholds of the MVPA derived from the Puyau CoP were 22 and 23 min∙d-1 when the categories based on BMI and FM%, respectively, were used. The children who did not meet these optimal thresholds had a significantly increased risk of being overweight/obese (OR = 2.88, P < 0.01) and risk of having excess fat mass (OR = 2.41, P < 0.01). In conclusion, the decision of selecting among various CoPs significantly influences the optimal levels of MVPA. The Puyau CoP of 3 200 cmp seems to be the most useful for defining the optimal level of PA for pediatric obesity prevention.
Project description:BackgroundAccurate assessment of physical activity among coronary artery disease patients is important for assessing adherence to interventions. The study compared moderate-to-vigorous physical intensity activity and relationships with cardiometabolic health/fitness indicators using accelerometer cut-points developed for coronary artery disease patients versus those developed in younger and middle-aged adults.MethodsA total of 231 adults with coronary artery disease wore an Actigraph GT3X accelerometer for ≥4 days (≥10 hours/day). Moderate-to-vigorous intensity physical activity between cut-points was compared using Bland-Altman analyses. Partial spearman correlations assessed relationships between moderate-to-vigorous intensity physical activity from each cut-point with markers of cardiometabolic health and fitness while controlling for age and sex.ResultsAverage time spent in bouts of moderate-to-vigorous intensity physical activity using coronary artery disease cut-points was significantly higher than the young (mean difference: 13.0±12.8 minutes/day) or middle-aged (17.0±15.2 minutes/day) cut-points. Young and middle-aged cut-points were more strongly correlated with body mass index, waist circumference and systolic blood pressure, while coronary artery disease cut-points had stronger relationships with triglycerides, high-density and low-density lipoproteins. All were similarly correlated with measures of fitness.ConclusionResearchers need to exert caution when deciding on which cut-points to apply to their population. Further work is needed to validate which cut-points provide a true reflection of moderate-to-vigorous intensity physical activity and to examine relationships among patients with varying fitness.
Project description:AimTo explore the literature about services and interventions provided to tween children as the basis for informing future practice and policy.BackgroundThe tween years (10-13 years) is a period in human development where children experience rapid physical and mental development; their thinking and actions are influenced by peer pressure, risk taking, concerns about their body image, size, and gender, and may become victims to bullying and increasing levels of mental ill-health. It may also be a time of transition between schooling institutions. Despite the multiplicity of these factors, pre-adolescents appear to be receiving little attention from both service providers and policy makers.MethodsFollowing the PRISMA reporting guidelines, a systematic search of peer-reviewed papers was conducted between June 2020 and April 2021. Studies were selected by screening their abstracts and titles. In total, 44 articles were included for in-depth analysis. Of these, 17 were randomised studies and 10 were non-randomised, and all were subjected to the assessment of risk of bias using the Review Manager Tool and ROBINS-I Tool respectively.Data extraction and synthesisData was extracted by type of service/intervention/program, country, and type of study/methodology, aim, sample size, age range, and findings. Data synthesis was performed using thematic analysis and content analysis. The results are presented in an outcome summary table highlighting the study's outcomes including the provided programs, their acceptability, and their impacts on factors such as anxiety and depression levels, change of attitude, behavioural control, weight loss, resilience and coping, emotional regulation, self-esteem, and improved well-being.ConclusionThe majority of programs described in this review reported positive results, and as a result have the potential to make a valuable contribution to future practice, policy, and research involving the tweens.
Project description:BackgroundSerum cotinine has become the most widely used biomarker of secondhand smoke exposure (SHS) over time in all ages. The aim of this study was to review the serum cotinine cut-points used to classify children under 5 years as exposed to SHS.MethodsA systematic review performed in the Pubmed (MEDLINE) and EMBASE databases up to April 2021 was conducted using as key words "serum cotinine", "tobacco smoke pollution" (MeSH), "secondhand smoke", "environmental tobacco smoke" and "tobacco smoke exposure". Papers which assessed SHS exposure among children younger than 5 years old were included. The PRISMA 2020 guidelines were followed. Analysis was pre-registered in PROSPERO (registration number: CRD42021251263).Results247 articles were identified and 51 fulfilled inclusion criteria. The selected studies were published between 1985-2020. Most of them included adolescents and adults. Only three assessed postnatal exposure exclusively among children under 5 years. None of the selected studies proposed age-specific cut-points for children < 5 years old. Cut-point values to assess SHS exposure ranged from 0.015 to 100 ng/ml. The most commonly used cut-point was 0.05 ng/ml, derived from the assay limit of detection used by the National Health and Nutrition Examination Survey (NHANES).ConclusionsNo studies have calculated serum cotinine age-specific cut-points to ascertained SHS exposure among children under 5 years old. Children's age-specific cut-points are warranted for health research and public health purposes aimed at accurately estimating the prevalence of SHS exposure and attributable burden of disease to such exposure, and at reinforcing 100% smoke-free policies worldwide, both in homes, private vehicles and public places.
Project description:BackgroundIncorporating physical activity into lifestyle routines is recommended for individuals with type 2 diabetes. Accelerometers offer a promising method for objectively measuring physical activity and for assessing interventions. However, the existing literature for accelerometer-measured physical activity among middle-aged and older adults with type 2 diabetes is lacking.ObjectiveThis study aims to identify research studies in which accelerometer-based cut points were used to classify the physical activity intensity of middle-aged to older adults with type 2 diabetes as sedentary, light, moderate, vigorous, and very vigorous, and to determine if validated accelerometer cut points specifically for this population exist.MethodsWe followed the Joanna Briggs Institute methodology for scoping reviews. Between June 23 and July 12, 2020, two reviewers independently screened records from four databases (PubMed, Web of Science, Embase, Engineering Village) and the ActiGraph Corp web site for eligible studies that included patients with type 2 diabetes with a sample mean age ≥50 years, used research-grade accelerometers, applied cut points to categorize objectively measured physical activity, and were available in English. We excluded studies reporting exclusively steps or step counts measured by accelerometers or pedometers and conference abstracts or other sources that did not have a full text available. Data extraction was completed using Microsoft Excel. Data for the following variables were tabulated based on frequency distributions: study design, accelerometer type, device placement, epoch length, total wear time, and cut points used. Study aims and participant demographic data were summarized.ResultsA total of 748 records were screened at the abstract level, and 88 full-text articles were assessed for eligibility. Ultimately, 46 articles were retained and analyzed. Participants' mean ages ranged from 50 to 79.9 years. The ActiGraph accelerometer and the Freedson et al and Troiano et al counts-per-minute cut points were the most frequently used across the literature. Freedson et al and Troiano et al counts-per-minute cut points for light, moderate, and vigorous activity correspond to <1952, 1952-5724, and ≥5725, and 100-2019, 2020-5998, and ≥5999, respectively. The Lopes et al cut points were developed by calibrating the ActiGraph in middle-aged and older adults with overweight/obesity and type 2 diabetes. These counts-per-minute thresholds are ≥200 (light), ≥1240 (moderate), and ≥2400 (vigorous), and were applied in 1 interventional study.ConclusionsAn assortment of accelerometer cut points have been used by researchers to categorize physical activity intensity for middle-aged and older adults with diabetes. Only one set of cut points was validated and calibrated in our population of interest. Additional research is warranted to address the need for diabetes-specific cut points to inform public health recommendations. This includes confirmation that the Lopes et al cut points reflect clinically meaningful changes in physical activity for adults with diabetes who have comorbidities other than overweight/obesity and the development of relative intensity cut points that may be more suitable for those with suboptimal physical functioning.
Project description:Wrist-based accelerometers are increasingly used to assess physical activity (PA) in population-based studies; however, cut-points to translate wrist-based accelerometer counts into PA intensity categories are still needed. The purpose of this study was to determine wrist-based cut-points for moderate- and vigorous-intensity ambulatory PA in adults for the Actical accelerometer. Healthy adults (n = 24) completed a four-phase treadmill exercise protocol (1.9, 3.0, 4.0 and 5.2 mph) while wearing an Actical accelerometer on their wrist. Metabolic equivalent of task (MET) levels were assessed by indirect calorimetry. Receiver operating characteristics (ROC) curves were generated to determine accelerometer counts that maximised sensitivity and specificity for classification of moderate (≥3 METs) and vigorous (>6 METs) ambulatory activity. The area under the ROC curves to discriminate moderate- and vigorous-intensity ambulatory activity were 0.93 (95% confidence interval [CI]: 0.90-0.97; P < 0.001) and 0.96 (95% CI: 0.94-0.99; P < 0.001), respectively. The identified cut-point for moderate-intensity ambulatory activity was 1031 counts per minute, which had a corresponding sensitivity and specificity of 85.6% and 87.5%, respectively. The identified cut-point for vigorous intensity ambulatory activity was 3589 counts per minute, which had a corresponding sensitivity and specificity of 88.0% and 98.7%, respectively. This study established intensity-specific cut-points for wrist-based wear of the Actical accelerometer which are recommended for quantification of moderate- and vigorous-intensity ambulatory activity.