Project description:Laser-driven ultrafast electron emission offers the possibility of manipulation and control of coherent electron motion in ultrashort spatiotemporal scales. Here, an analytical solution is constructed for the highly nonlinear electron emission from a dc biased metal surface illuminated by a single frequency laser, by solving the time-dependent Schrödinger equation exactly. The solution is valid for arbitrary combinations of dc electric field, laser electric field, laser frequency, metal work function and Fermi level. Various emission mechanisms, such as multiphoton absorption or emission, optical or dc field emission, are all included in this single formulation. The transition between different emission processes is analyzed in detail. The time-dependent emission current reveals that intense current modulation may be possible even with a low intensity laser, by merely increasing the applied dc bias. The results provide insights into the electron pulse generation and manipulation for many novel applications based on ultrafast laser-induced electron emission.
Project description:Multisoliton solutions are derived for a general nonlinear Schrödinger equation with derivative by using Hirota's approach. The dynamics of one-soliton solution and two-soliton interactions are also illustrated. The considered equation can reduce to nonlinear Schrödinger equation with derivative as well as the solutions.
Project description:The short-time integrator for propagating the time-dependent Schrödinger equation, which is exact to machine's round off accuracy when the Hamiltonian of the system is time-independent, was applied to solve dynamics processes. This integrator has the old Cayley's form [i.e., the Padé (1,1) approximation], but is implemented in a spectrally transformed Hamiltonian which was first introduced by Chen and Guo. Two examples are presented for illustration, including calculations of the collision energy-dependent probability passing over a barrier, and interaction process between pulse laser and the I(2) diatomic molecule.
Project description:The Ritz upper bound to eigenvalues of Hermitian operators is essential for many applications in science. It is a staple of quantum chemistry and physics computations. The lower bound devised by Temple in 1928 [G. Temple, Proc. R. Soc. A Math. Phys. Eng. Sci. 119, 276-293 (1928)] is not, since it converges too slowly. The need for a good lower-bound theorem and algorithm cannot be overstated, since an upper bound alone is not sufficient for determining differences between eigenvalues such as tunneling splittings and spectral features. In this paper, after 90 y, we derive a generalization and improvement of Temple's lower bound. Numerical examples based on implementation of the Lanczos tridiagonalization are provided for nontrivial lattice model Hamiltonians, exemplifying convergence over a range of 13 orders of magnitude. This lower bound is typically at least one order of magnitude better than Temple's result. Its rate of convergence is comparable to that of the Ritz upper bound. It is not limited to ground states. These results complement Ritz's upper bound and may turn the computation of lower bounds into a staple of eigenvalue and spectral problems in physics and chemistry.
Project description:We present a simple, one-dimensional model of an atom exposed to a time-dependent intense, short-pulse EM field with the objective of teaching undergraduates how to apply various numerical methods to study the behavior of this system as it evolves in time using several time propagation schemes.In this model, the exact Coulomb potential is replaced by a soft-core interaction to avoid the singularity at the origin. While the model has some drawbacks, it has been shown to be a reasonable representation of what occurs in the fully three-dimensional hydrogen atom.The model can be used as a tool to train undergraduate physics majors in the art of computation and software development. Program Title:: 1d hydrogen light interactionProgram Files doi:: http://dx.doi.org/10.17632/2275fmvdzc.1Code Ocean Capsule:: https://doi.org/10.24433/CO.1476487.v1Licensing provisions:: MIT licenseProgramming language:: FORTRAN90Nature of problem:: The one dimensional time dependent Schrödinger equation has been shown to be quite useful as a model to study the Hydrogen atom exposed to an intense, short pulse, electromagnetic field. We use a model potential that is cut-off near x = 0 and avoids the singularity of the true 1-D potential, but retains the characteristic Rydberg series and continuum to study excitation and ionization of the true H atom. The code employs a number of numerical methods to understand and compare the efficacy and accuracy when applied to this model problem.Solution method:: The program uses and contrasts a number of approaches; the Crank-Nicolson, Short Iterative Lanczos, various incarnations of the split-operator and the Chebychev method have been programmed. These methods have been compared using a 3-point finite difference (FD) discretization of the space coordinate. For completeness, some attention has also been given to using 5-9 FD formulas in order to show how higher order discretization affects the accuracy and efficiency of the methods but the primary focus of the method is the time propagation.Additional comments including restrictions and unusual features:: The main purpose of this code is as a teaching tool for undergraduates interested in acquiring knowledge of numerical methods and programming skills useful to a practicing computational physicist.
Project description:In this study, we apply the definition of one of the fractional derivatives definitions of increasing values of the variable, which is the fractional derivative of Riemann-Liouville, and the numerical-integral methods to find numerical solutions of the fractional Schrödinger equation with the time-independent form for Van Der Walls potential type. We use the dimensionless formalism of the fractional Schrödinger equation in the space-dependent form in case of London dispersion potential in the stationary state. The solutions are found for multiple values of the space-dependent fractional Schrödinger equation parameter with a certain value of the energy. We find that the numerical solutions are physically acceptable for some values of the space dependent fractional parameter of the fractional Schrödinger equation but are not physically acceptable for others for a specific case. The numerical solutions can be applied for the systems that obey London dispersion potential type, which is resulted from the polarization of the instantaneous multi-poles of two moieties, such as soft materials systems and fluids of the inert gases.
Project description:The Purcell effect, i.e., the modification of the spontaneous emission rate by optical interference, profoundly affects the light-matter coupling in optical resonators. Fully describing the optical absorption, emission, and interference of light hence conventionally requires combining the full Maxwell's equations with stochastic or quantum optical source terms accounting for the quantum nature of light. We show that both the nonlocal wave and local particle features associated with interference and emission of propagating fields in stratified geometries can be fully captured by local damping and scattering coefficients derived from the recently introduced quantized fluctuational electrodynamics (QFED) framework. In addition to describing the nonlocal optical interference processes as local directionally resolved effects, this allows reformulating the well known and widely used radiative transfer equation (RTE) as a physically transparent interference-exact model that extends the useful range of computationally efficient and quantum optically accurate interference-aware optical models from simple structures to full optical devices.
Project description:A steady solution of the incompressible Euler equation on a toroidal surface T R , r of major radius R and minor radius r is provided. Its streamfunction is represented by an exact solution to the modified Liouville equation, ∇ T R , r 2 ψ = c e d ψ + ( 8 / d ) κ , where ∇ T R , r 2 and κ denote the Laplace-Beltrami operator and the Gauss curvature of the toroidal surface respectively, and c, d are real parameters with cd < 0. This is a generalization of the flows with smooth vorticity distributions owing to Stuart (Stuart 1967 J. Fluid Mech. 29, 417-440. (doi:10.1017/S0022112067000941)) in the plane and Crowdy (Crowdy 2004 J. Fluid Mech. 498, 381-402. (doi:10.1017/S0022112003007043)) on the spherical surface. The flow consists of two point vortices at the innermost and the outermost points of the toroidal surface on the same line of a longitude, and a smooth vorticity distribution centred at their antipodal position. Since the surface of a torus has non-constant curvature and a handle structure that are different geometric features from the plane and the spherical surface, we focus on how these geometric properties of the torus affect the topological flow structures along with the change of the aspect ratio α = R/r. A comparison with the Stuart vortex on the flat torus is also made.
Project description:In typical numerical simulations, the space-charge force is calculated by slicing a beam into many longitudinal segments and by solving the two-dimensional Poisson equation in each segment. This method neglects longitudinal leakage of the space-charge force to nearby segments owing to its longitudinal spread over 1/γ. By contrast, the space-charge impedance, which is the Fourier transform of the wake function, is typically calculated directly in the frequency-domain. So long as we follow these approaches, the longitudinal leakage effect of the wake function will remain to be unclear. In the present report, the space-charge wake function is calculated directly in the time domain by solving the three-dimensional Poisson equation for a longitudinally Gaussian beam. We find that the leakage effect is insignificant for a bunch that is considerably longer than the chamber radius so long as the segment length satisfies a certain condition. We present a criterion for how finely a bunch should be sliced so that the two-dimensional slicing approach can provide a good approximation of the three-dimensional exact solution.
Project description:Many gravitational phenomena that lie at the core of our understanding of the Universe have not yet been directly observed. An example in this sense is the boson star that has been proposed as an alternative to some compact objects currently interpreted as being black holes. In the weak field limit, these stars are governed by the Newton-Schrodinger equation. Here we present an optical system that, under appropriate conditions, identically reproduces such equation in two dimensions. A rotating boson star is experimentally and numerically modelled by an optical beam propagating through a medium with a positive thermal nonlinearity and is shown to oscillate in time while also stable up to relatively high densities. For higher densities, instabilities lead to an apparent breakup of the star, yet coherence across the whole structure is maintained. These results show that optical analogues can be used to shed new light on inaccessible gravitational objects.