Project description:Alzheimer's disease (AD) is characterized by progressive episodic memory dysfunction. A prominent hallmark of AD is gradual brain atrophy. Despite extensive research on brain pathology, the understanding of spinal cord pathology in AD and its association with cognitive decline remains understudied. We analyzed serial magnetic resonance imaging (MRI) scans from the ADNI data repository to assess whether progressive cord atrophy is associated with clinical worsening. Cervical cord morphometry was measured in 45 patients and 49 cognitively normal controls (CN) at two time points over 1.5 years. Regression analysis examined associations between cord atrophy rate and cognitive worsening. Cognitive and functional activity performance declined in patients during follow-up. Compared with controls, patients showed a greater rate of decline of the anterior-posterior width of the cross-sectional cord area per month (- 0.12%, p = 0.036). Worsening in the mini-mental state examination (MMSE), clinical dementia rating (CDR), and functional assessment questionnaire (FAQ) was associated with faster rates of cord atrophy (MMSE: r = 0.320, p = 0.037; CDR: r = - 0.361, p = 0.017; FAQ: r = - 0.398, p = 0.029). Progressive cord atrophy occurs in AD patients; its rate over time being associated with cognitive and functional activity decline.
Project description:Progranulin (PGRN) is predominantly expressed by microglia in the brain, and genetic and experimental evidence suggests a critical role in Alzheimer's disease (AD). We asked whether PGRN expression is changed in a disease severity-specific manner in AD We measured PGRN in cerebrospinal fluid (CSF) in two of the best-characterized AD patient cohorts, namely the Dominant Inherited Alzheimer's Disease Network (DIAN) and the Alzheimer's Disease Neuroimaging Initiative (ADNI). In carriers of AD causing dominant mutations, cross-sectionally assessed CSF PGRN increased over the course of the disease and significantly differed from non-carriers 10 years before the expected symptom onset. In late-onset AD, higher CSF PGRN was associated with more advanced disease stages and cognitive impairment. Higher CSF PGRN was associated with higher CSF soluble TREM2 (triggering receptor expressed on myeloid cells 2) only when there was underlying pathology, but not in controls. In conclusion, we demonstrate that, although CSF PGRN is not a diagnostic biomarker for AD, it may together with sTREM2 reflect microglial activation during the disease.
Project description:We examined the effects of a dihydropyridine calcium channel blocker nilvadipine with anti-inflammatory properties on cognition and cerebrospinal fluid (CSF) biomarkers by baseline Alzheimer's disease (AD) severity. Exploratory analyses were performed on the dataset (n = 497) of a phase III randomized placebo-controlled trial to examine the response to nilvadipine in AD subjects stratified by baseline AD severity into very mild (MMSE ≥ 25), mild (MMSE 20-24) and moderate AD (MMSE < 20). The outcome measures included total and subscale scores of the Alzheimer's Disease Assessment Scale Cognitive 12 (ADAS-Cog 12), the Clinical Dementia Rating Scale sum of boxes (CDR-sb) and the AD composite score (ADCOMS). Cerebrospinal fluid biomarkers Aβ38, Aβ40, Aβ42, neurofilament light chain (NFL), neurogranin, YKL-40, total tau and P181 tau (ptau) were measured in a subset of samples (n = 55). Regression analyses were adjusted for confounders to specifically examine the influence of nilvadipine and baseline AD severity on cognitive outcomes over 78-weeks. Compared to their respective placebo-controls, nilvadipine-treated, very mild AD subjects showed less decline, whereas moderate AD subjects showed a greater cognitive decline on the ADAS-Cog 12 test and the ADCOMS. A lower decline was observed after nilvadipine treatment for a composite memory trait in very mild AD subjects and a composite language trait in mild AD subjects. Cerebrospinal fluid Aβ42/Aβ40 ratios were increased in mild AD and decreased in moderate AD patients treated with nilvadipine, compared to their respective controls. Among moderate AD subjects, levels of ptau, total tau, neurogranin and YKL-40 increased in subjects treated with nilvadipine compared to placebo. These studies suggest that baseline AD severity influenced the treatment outcome in the NILVAD trial and that future clinical trials of nilvadipine should be restricted to mild and very mild AD patients. Trial Registration: NCT02017340 Registered 20 December 2013, https://clinicaltrials.gov/ct2/show/NCT02017340 EUDRACT Reference Number 2012-002764-27 Registered 04 February 2013, https://www.clinicaltrialsregister.eu/ctr-search/search?query=2012-002764-27.
Project description:ObjectiveAlthough chronic exposure to air pollution is associated with an increased risk of dementia in normal elderlies, the effect of chronic exposure to air pollution on the rates of cognitive decline in Alzheimer's disease (AD) has not been elucidated.MethodsIn this longitudinal study, a total of 269 patients with mild cognitive impairment or early dementia due to AD with the evidence of brain β-amyloid deposition were followed-up for a mean period of 4 years. Five-year normalized hourly cumulative exposure value of each air pollutant, such as carbon monoxide (CO), nitrogen dioxide (NO2 ), sulfur dioxide (SO2 ), and particulate matter (PM2.5 and PM10 ), was computed based on nationwide air pollution database. The effects of chronic exposure to air pollution on longitudinal cognitive decline rate were evaluated using linear mixed models.ResultsHigher chronic exposure to SO2 was associated with a faster decline in memory score, whereas chronic exposure to CO, NO2 , and PM10 were not associated with the rate of cognitive decline. Higher chronic exposure to PM2.5 was associated with a faster decline in visuospatial score in apolipoprotein E ε4 carriers. These effects remained significant even after adjusting for potential confounders.InterpretationOur findings suggest that chronic exposure to SO2 and PM2.5 is associated with faster clinical progression in AD.
Project description:Alzheimer's disease is a heterogeneous disorder. Understanding the biological basis for this heterogeneity is key for developing personalized medicine. We identified atrophy subtypes in Alzheimer's disease dementia and tested whether these subtypes are already present in prodromal Alzheimer's disease and could explain interindividual differences in cognitive decline. First we retrospectively identified atrophy subtypes from structural MRI with a data-driven cluster analysis in three datasets of patients with Alzheimer's disease dementia: discovery data (dataset 1: n = 299, age = 67 ± 8, 50% female), and two independent external validation datasets (dataset 2: n = 181, age = 66 ± 7, 52% female; dataset 3: n = 227, age = 74 ± 8, 44% female). Subtypes were compared on clinical, cognitive and biological characteristics. Next, we classified prodromal Alzheimer's disease participants (n = 603, age = 72 ± 8, 43% female) according to the best matching subtype to their atrophy pattern, and we tested whether subtypes showed cognitive decline in specific domains. In all Alzheimer's disease dementia datasets we consistently identified four atrophy subtypes: (i) medial-temporal predominant atrophy with worst memory and language function, older age, lowest CSF tau levels and highest amount of vascular lesions; (ii) parieto-occipital atrophy with poor executive/attention and visuospatial functioning and high CSF tau; (iii) mild atrophy with best cognitive performance, young age, but highest CSF tau levels; and (iv) diffuse cortical atrophy with intermediate clinical, cognitive and biological features. Prodromal Alzheimer's disease participants classified into one of these subtypes showed similar subtype characteristics at baseline as Alzheimer's disease dementia subtypes. Compared across subtypes in prodromal Alzheimer's disease, the medial-temporal subtype showed fastest decline in memory and language over time; the parieto-occipital subtype declined fastest on executive/attention domain; the diffuse subtype in visuospatial functioning; and the mild subtype showed intermediate decline in all domains. Robust atrophy subtypes exist in Alzheimer's disease with distinct clinical and biological disease expression. Here we observe that these subtypes can already be detected in prodromal Alzheimer's disease, and that these may inform on expected trajectories of cognitive decline.
Project description:Seed amplification assays have been implemented in Parkinson's disease to reveal disease-specific misfolded alpha-synuclein aggregates in biospecimens. While the assays' qualitative dichotomous seeding response is valuable to stratify and enrich cohorts for alpha-synuclein pathology in general, more quantitative parameters that are associated with clinical dynamics of disease progression and that might potentially serve as exploratory outcome measures in clinical trials targeting alpha-synuclein would add important information. To evaluate whether the seeding kinetic parameters time required to reach the seeding threshold (LAG phase), the peak of fluorescence response (Imax), and the area under the curve (AUC) are associated with clinical trajectories, we analyzed LAG, Imax, and AUC in relation to the development of cognitive decline in a longitudinal cohort of 199 people with Parkinson's disease with positive CSF alpha-synuclein seeding status. Patients were stratified into tertiles based on their individual CSF alpha-synuclein seeding kinetic properties. The effect of the kinetic parameters on longitudinal development of cognitive impairment defined by MoCA ≤25 was analyzed by Cox-Regression. Patients with a higher number of positive seeding replicates and tertile groups of shorter LAG, higher Imax, and higher AUC showed a higher prevalence of and a shorter duration until cognitive impairment longitudinally (3, 6, and 3 years earlier with p ≤ 0.001, respectively). Results remained similar in separate subgroup analyses of patients with and without GBA mutation. We conclude that a more prominent alpha-synuclein seeding kinetic profile translates into a more rapid development of cognitive decline.
Project description:Periodontitis is common in the elderly and may become more common in Alzheimer's disease because of a reduced ability to take care of oral hygiene as the disease progresses. Elevated antibodies to periodontal bacteria are associated with an increased systemic pro-inflammatory state. Elsewhere raised serum pro-inflammatory cytokines have been associated with an increased rate of cognitive decline in Alzheimer's disease. We hypothesized that periodontitis would be associated with increased dementia severity and a more rapid cognitive decline in Alzheimer's disease. We aimed to determine if periodontitis in Alzheimer's disease is associated with both increased dementia severity and cognitive decline, and an increased systemic pro inflammatory state. In a six month observational cohort study 60 community dwelling participants with mild to moderate Alzheimer's Disease were cognitively assessed and a blood sample taken for systemic inflammatory markers. Dental health was assessed by a dental hygienist, blind to cognitive outcomes. All assessments were repeated at six months. The presence of periodontitis at baseline was not related to baseline cognitive state but was associated with a six fold increase in the rate of cognitive decline as assessed by the ADAS-cog over a six month follow up period. Periodontitis at baseline was associated with a relative increase in the pro-inflammatory state over the six month follow up period. Our data showed that periodontitis is associated with an increase in cognitive decline in Alzheimer's Disease, independent to baseline cognitive state, which may be mediated through effects on systemic inflammation.
Project description:In this paper, we explore the utility of resting-state EEG measures as potential biomarkers for the detection and assessment of cognitive decline in mild cognitive impairment (MCI) and Alzheimer's disease (AD). Neurophysiological biomarkers of AD derived from EEG and FDG-PET, once characterized and validated, would expand the set of existing diagnostic molecular biomarkers of AD pathology with associated biomarkers of disease progression and neural dysfunction. Since symptoms of AD often begin to appear later in life, successful identification of EEG-based biomarkers must account for age-related neurophysiological changes that occur even in healthy individuals. To this end, we collected EEG data from individuals with AD (n = 26), MCI (n = 53), and cognitively normal healthy controls stratified by age into three groups: 18-40 (n = 129), 40-60 (n = 62) and 60-90 (= 55) years old. For each participant, we computed power spectral density at each channel and spectral coherence between pairs of channels. Compared to age matched controls, in the AD group, we found increases in both spectral power and coherence at the slower frequencies (Delta, Theta). A smaller but significant increase in power of slow frequencies was observed for the MCI group, localized to temporal areas. These effects on slow frequency spectral power opposed that of normal aging observed by a decrease in the power of slow frequencies in our control groups. The AD group showed a significant decrease in the spectral power and coherence in the Alpha band consistent with the same effect in normal aging. However, the MCI group did not show any significant change in the Alpha band. Overall, Theta to Alpha ratio (TAR) provided the largest and most significant differences between the AD group and controls. However, differences in the MCI group remained small and localized. We proposed a novel method to quantify these small differences between Theta and Alpha bands' power using empirically derived distributions of spectral power across the time domain as opposed to averaging power across time. We defined Power Distribution Distance Measure (PDDM) as a distance measure between probability distribution functions (pdf) of Theta and Alpha power. Compared to average TAR, using PDDF enhanced the statistical significance, the effect size, and the spatial distribution of significant effects in the MCI group. We designed classifiers for differentiating individual MCI and AD participants from age-matched controls. The classification performance measured by the area under ROC curve after cross-validation were AUC = 0.85 and AUC = 0.6, for AD and MCI classifiers, respectively. Posterior probability of AD, TAR, and the proposed PDDM measure were all significantly correlated with MMSE score and neuropsychological tests in the AD group.
Project description:ObjectiveCognitive decline associated with Parkinson disease (PD) is common and highly disabling. Biomarkers that help identify patients at risk for cognitive decline would be useful additions to the clinical management of the disease.MethodsA total of 45 patients with PD were enrolled in this prospective cohort study and had at least 1 yearly longitudinal follow-up evaluation. CSF was collected at baseline and cognition was assessed at baseline and follow-up visits using the Mattis Dementia Rating Scale (DRS-2). CSF was tested for amyloid β 1-42 (Aβ(1-42)), p-tau(181p), and total tau levels using the Luminex xMAP platform. Mixed linear models were used to test for associations between baseline CSF biomarker levels and change in cognition over time.ResultsLower baseline CSF Aβ(1-42) was associated with more rapid cognitive decline. Subjects with CSF Aβ(1-42) levels ≤192 pg/mL declined an average of 5.85 (95% confidence interval 2.11-9.58, p = 0.002) points per year more rapidly on the DRS-2 than subjects above that cutoff, after adjustment for age, disease duration, and baseline cognitive status. CSF total tau and p-tau(181p) levels were not significantly associated with cognitive decline.ConclusionsReduced CSF Aβ(1-42) was an independent predictor of cognitive decline in patients with PD. This observation is consistent with previous research showing that Alzheimer disease pathology contributes to cognitive impairment in PD. This biomarker may provide clinically useful prognostic information, particularly if combined with other risk factors for cognitive impairment in PD.
Project description:IntroductionA substantial proportion of patients with Parkinson's disease (PD) have concomitant cognitive dysfunction. Identification of biomarker profiles that predict which PD patients have a greater likelihood for progression of cognitive symptoms is pressingly needed for future treatment and prevention approaches.MethodsSubjects were drawn from the Deprenyl and Tocopherol Antioxidative Therapy of Parkinsonism (DATATOP) study, a large clinical trial that enrolled initially untreated PD patients. For the current study, Phase One encompassed trial baseline until just prior to levodopa administration (n = 403), and Phase Two spanned the initiation of levodopa treatment until the end of cognitive follow-up (n = 305). Correlations and linear mixed models were performed to determine cross-sectional and longitudinal associations between baseline amyloid β1-42 (Aβ42), total tau (t-tau), and phosphorylated tau (p-tau) in cerebrospinal fluid (CSF) and measures of memory and executive function. Analyses also considered APOE genotype and tremor- vs. rigidity-dominant phenotype.ResultsNo association was found between baseline CSF biomarkers and cognitive test performance during Phase One. However, once levodopa treatment was initiated, higher p-tau and p-tau/Aβ42 predicted subsequent decline on cognitive tasks involving both memory and executive functions. The interactions between biomarkers and cognition decline did not appear to be influenced by levodopa dosage, APOE genotype or motor phenotype.ConclusionsThe current study has, for the first time, demonstrated the possible involvement of tau species, whose gene (MAPT) has been consistently linked to the risk of PD by genome-wide association studies, in the progression of cognitive symptoms in PD.