Project description:Bardet-Biedl syndrome (BBS) is a rare autosomal recessive ciliopathy characterised by retinal dystrophy, obesity, post-axial polydactyly, renal dysfunction, learning difficulties and hypogonadism. Many associated minor features can be helpful in making a diagnosis and are important in the clinical management of BBS. The diagnosis is based on clinical findings and can be confirmed by sequencing of known disease-causing genes in 80% of patients. BBS genes encode proteins that localise to the cilia and basal body and are involved in cilia biogenesis and function. Mutations lead to defective cilia accounting in part for the pleiotropic effects observed in BBS. We provide an overview of BBS including the clinical findings, current understanding of cilia biology, and a practical approach to diagnosis, genetic counselling and up-to-date management.
Project description:The Bardet-Biedl syndrome (BBS) is a significant genetic cause of chronic and end-stage renal failure in children. Despite being a relatively rare recessive condition, BBS has come to prominence during the past few years owing to revelations of primary cilia dysfunction underlying pathogenesis. The study of this multi-system disorder, which includes obesity, cognitive impairment, genito-urinary tract malformations and limb deformities, is beginning to reveal insights into several aspects of mammalian development and organogenesis. Involvement of BBS proteins in disparate pathways such as the non-canonical Wnt and Sonic Hedgehog pathways is highlighting their interplay in disease pathogenesis. Here we review the recent developments in this emerging field, with the emphasis on the renal component of the syndrome and potential future directions.
Project description:Bardet-Biedl syndrome (BBS) is a rare disorder with a frequency of 1:1,60,000. The disease is inherited in an autosomal recessive manner. Less than 15 cases have been reported from India. We present a case of Bardet-Biedl syndrome presenting to the medical emergency with acute breathlessness because of de-compensated renal failure and salient features such as marked polydactyly, central obesity, retinitis pigmentosa, end-stage renal diseases, and mental retardation. Genetic study showed that the patient had BBS genetic variant 9 (MIM#615896), VUS variant. The patient was primarily treated for end-stage chronic renal failure with hemodialysis. We are reporting this case for its rarity and the presence of a novel genetic variant of an unidentified significance as per genome mapping. BBS is often not diagnosed at all or diagnosed late until end-stage renal failure sets in. Timely diagnosis might not help treat the condition but surely improve the quality of life for the patient.
Project description:The aim of this study was to explore kidney failure (KF) in Bardet-Biedl syndrome (BBS), focusing on high-risk gene variants, demographics, and morbidity. We employed the Clinical Registry Investigating BBS (CRIBBS) to identify 44 (7.2%) individuals with KF out of 607 subjects. Molecularly confirmed BBS was identified in 37 KF subjects and 364 CRIBBS registrants. KF was concomitant with recessive causal variants in 12 genes, with BBS10 the most predominant causal gene (26.6%), while disease penetrance was highest in SDCCAG8 (100%). Two truncating variants were present in 67.6% of KF cases. KF incidence was increased in genes not belonging to the BBSome or chaperonin-like genes (p < 0.001), including TTC21B, a new candidate BBS gene. Median age of KF was 12.5 years, with the vast majority of KF occurring by 30 years (86.3%). Females were disproportionately affected (77.3%). Diverse uropathies were identified, but were not more common in the KF group (p = 0.672). Kidney failure was evident in 11 of 15 (73.3%) deaths outside infancy. We conclude that KF poses a significant risk for premature morbidity in BBS. Risk factors for KF include female sex, truncating variants, and genes other than BBSome/chaperonin-like genes highlighting the value of comprehensive genetic investigation.
Project description:Bardet-Biedl syndrome (BBS) is a heterogeneous disorder characterized by obesity, retinopathy, polydactyly, and congenital anomalies. The incidence of hypertension and diabetes are also increased in BBS patients. Mutation of 16 genes independently causes BBS, and seven BBS proteins form the BBSome that promotes ciliary membrane elongation. BBS3 (ARL6), an ADP ribosylation factor-like small GTPase, is not part of the BBSome complex. The in vivo function of BBS3 is largely unknown. Here we developed a Bbs3 knockout model and demonstrate that Bbs3(-/-) mice develop BBS-associated phenotypes, including retinal degeneration, male infertility, and increased body fat. Interestingly, Bbs3(-/-) mice develop some unique phenotypes not seen in other BBS knockout models: no overt obesity, severe hydrocephalus, and elevated blood pressure (shared by some but not all BBS gene knockout mice). We found that endogenous BBS3 and the BBSome physically interact and depend on each other for their ciliary localization. This finding explains the phenotypic similarity between Bbs3(-/-) mice and BBSome subunit knockout mice. Loss of Bbs3 does not affect BBSome formation but disrupts normal localization of melanin concentrating hormone receptor 1 to ciliary membranes and affects retrograde transport of Smoothened inside cilia. We also show that the endogenous BBSome and BBS3 associate with membranes and the membrane association of the BBSome and BBS3 are not interdependent. Differences between BBS mouse models suggest nonoverlapping functions to individual BBS protein.
Project description:Bardet-Biedl syndrome (BBS, OMIM 209900) is a ciliopathy causing multivisceral abnormalities. This disease is mainly characterized by obesity, post-axial polydactyly, hypogenitalism, intellectual disabilities, pigmentary retinopathy, and renal deficiency. The prevalence of BBS has been estimated in different populations, ranging from 1 in 160,000 in European populations to 1 in 13,000 in Bedouins from Kuwait. In the present report, we present the first epidemiological study of Bardet-Biedl syndrome in Tunisia. From 1984 to 2009, 46 Tunisian families, including 67 affected members, were diagnosed as BBS. The patients' ages ranged between 6 months and 37 years, with median age of 10.4 years. High level of consanguinity was noted in our cohort (93.47%). The overall minimum prevalence in our population was estimated to be approximately 1 in 156,000 individuals. Our study reflects the actual frequency of BBS in North Africa and showed that this disease seems uncommon.
Project description:BACKGROUND:The importance of hyperphagia as a cause for energy imbalance in humans with Bardet-Biedl syndrome (BBS) has not been established. We therefore compared hyperphagic symptoms in patients with BBS vs. controls. METHODS:We studied 13 patients with BBS and 23 non-syndromic controls with similar age, sex and body mass index (BMI) z-score. A 13-item hyperphagia questionnaire was completed by patients' parents/guardians. RESULTS:Total hyperphagia questionnaire score was higher in BBS than controls (27.6?±?9.0 vs. 19.1?±?7.9, P?=?0.005). Behaviour and drive subscales were higher for BBS than controls (12.5?±?4.1 vs. 7.8?±?3.2, P?=?0.001, and 11.2?±?4.1 vs. 8.3?±?3.8, P?=?0.04, respectively); severity was not significantly different between groups (3.8?±?1.5 vs. 3.0?±?1.3, P?=?0.072). After adjustment for demographic variables and BMI z-score, total and behaviour subscale scores remained significantly different between groups, suggesting food-seeking activity, rather than preoccupation with food may be the main hyperphagic feature among patients with BBS. CONCLUSION:Appetite dysregulation may contribute to obesity in BBS.
Project description:BACKGROUND AND OBJECTIVES: Bardet-Biedl Syndrome (BBS) is a rare autosomal recessive ciliopathy with a wide spectrum of clinical features including obesity, retinitis pigmentosa, polydactyly, mental retardation, hypogonadism, and renal abnormalities. The molecular genetic profile of BBS is currently being investigated after the recent identification of 14 BBS genes involved in primary cilia-linked disease. This study aims to characterize the renal and cardiovascular presentations and to analyze possible relationships between genotypes and clinical phenotypes. DESIGN, SETTING, PARTICIPANTS & MEASUREMENTS: This clinical study was performed in a national cohort of 33 BBS patients, 22 men and 11 women, all aged >16 years (mean age 26.3 years). RESULTS: Renal abnormalities, including impairment of renal function and signs of chronic interstitial nephropathy of dysplastic nature, were documented in 82% of the patients. Cardiovascular evaluations revealed that this group of young patients had significant cardiovascular risk factors. Hypertension was found in >30% of the patients and hyperlipidemia in >60%, and almost 50% had other metabolic abnormalities. Overt diabetes was present in only 6%. With regard to genotype-phenotype correlation, patients with a mutation in the BBS6, BBS10, or BBS12 gene (10 of 33 patients) had more severe renal disease. CONCLUSIONS: Our study results confirm the frequent occurrence of renal involvement in patients with BBS, underscore the high risk of cardiovascular disease in these patients, and provide new information on a possible genotype-phenotype correlation.
Project description:Bardet-Biedl syndrome (BBS) is a genetically heterogeneous autosomal recessive disorder characterized by obesity, retinal degeneration, polydactyly, hypogenitalism and renal defects. Recent findings have associated the etiology of the disease with cilia, and BBS proteins have been implicated in trafficking various ciliary cargo proteins. To date, 17 different genes have been reported for BBS among which BBS1 is the most common cause of the disease followed by BBS10, and BBS4. A murine model of Bbs4 is known to phenocopy most of the human BBS phenotypes, and it is being used as a BBS disease model. To better understand the in vivo localization, cellular function, and interaction of BBS4 with other proteins, we generated a transgenic BBS4 mouse expressing the human BBS4 gene under control of the beta actin promoter. The transgene is expressed in various tissues including brain, eye, testis, heart, kidney, and adipose tissue. These mice were further bred to express the transgene in Bbs4 null mice, and their phenotype was characterized. Here we report that despite tissue specific variable expression of the transgene, human BBS4 was able to complement the deficiency of Bbs4 and rescue all the BBS phenotypes in the Bbs4 null mice. These results provide an encouraging prospective for gene therapy for BBS related phenotypes and potentially for other ciliopathies.
Project description:Bardet-Biedl syndrome (BBS) is an autosomal recessive disease characterized by retinal dystrophy, obesity, postaxial polydactyly, learning disabilities, renal involvement, and male hypogenitalism. BBS is genetically heterogeneous, and to date 18 genes (BBS1-18) have been described. Mutations in known BBS genes account for approximately 70-80% of cases, and triallelic inheritance has been suggested in about 5%. Many minor features can be helpful in making the clinical diagnosis. Recently, the use of next-generation sequencing technologies has accelerated the identification of novel genes and causative disease mutations in known genes. This report presents a concise overview of the current knowledge on clinical data in BBS and the progress in molecular genetics research. A future objective will be the development of BBS diagnosis kits in order to offer genetic counseling for families at risk.