Project description:The synthesis of O-doped polyaromatic hydro- carbons in which two polycyclic aromatic hydrocarbon sub units are bridged through one or two O atoms has been achieved. This includes high-yield ring-closure key steps that, depending on the reaction conditions, result in the formation of furanyl or pyranopyranyl linkages through intramolecular C-O bond formation. Comprehensive photophysical measurements in solution showed that these compounds have exceptionally high emission yields and tunable absorption properties throughout the UV/Vis spectral region. Electrochemical investigations showed that in all cases O annulation increases the electron-donor capabilities by raising the HOMO energy level, whereas the LUMO energy level is less affected. Moreover, third-order nonlinear optical (NLO) measurements on solutions or thin films containing the dyes showed very good values of the second hyperpolarizability. Importantly, poly(methyl methacrylate) films containing the pyranopyranyl derivatives exhibited weak linear absorption and NLO absorption compared to the nonlinearity and NLO refraction, respectively, and thus revealed them to be exceptional organic materials for photonic devices.
Project description:Assessing the potential carcinogenicity of human toxins represents an ongoing challenge. Chronic rodent bioassays predict human cancer risk with limited reliability, and are expensive and time-consuming. To identify alternative prediction methods, we evaluated a transcriptomics-based human in vitro model to classify carcinogens by their modes of action. The aim of this study was to determine the transcriptomic response and identify specific molecular signatures of polycyclic aromatic hydrocarbons (PAHs), which can be used as predictors of carcinogenicity of environmental toxins in human in vitro systems. We found that characteristic molecular signatures facilitate identification and prediction of carcinogens.
Project description:A C-H functionalizing annulation reaction of boron-doped polycyclic aromatic hydrocarbons (PAHs) with alkynes is described. This metal-free π-extension provides a new synthetic route to fusion atom B-doped polycyclic aromatic hydrocarbons (PAHs) that is demonstrated with the synthesis of a family of new, functionalized, structurally constrained 6a,15a-diborabenzo[tuv]naphtho[2,1-b]picenes. These annulation products exhibit deep LUMO energy levels, strong visible-range absorptions, and sterically accessible π-systems that can adopt herringbone or π-stacked solid-state structures based on choice of substituents. From regioselectivity and DFT calculations, we propose an annulation mechanism involving intramolecular electrophilic aromatic substitution of a zwitterionic intermediate.
Project description:Assessing the potential carcinogenicity of human toxins represents an ongoing challenge. Chronic rodent bioassays predict human cancer risk with limited reliability, and are expensive and time-consuming. To identify alternative prediction methods, we evaluated a transcriptomics-based human in vitro model to classify carcinogens by their modes of action. The aim of this study was to determine the transcriptomic response and identify specific molecular signatures of polycyclic aromatic hydrocarbons (PAHs), which can be used as predictors of carcinogenicity of environmental toxins in human in vitro systems. We found that characteristic molecular signatures facilitate identification and prediction of carcinogens. To evaluate the change in gene expression levels, human hepatocellular carcinoma (HepG2) cells were exposed to nine different PAHs (benzo[a]pyrene, dibenzo[a,h]anthracene, 3-methylcholanthrene, naphthalene, chrysene, phenanthrene, benzo[a]anthracene, benzo[k]fluoranthene, and indeno[1,2,3-c,d]pyrene) for 48 h. Gene expression analysis was conducted using a 44K whole human genome microarray (Agilent Technologies, USA).
Project description:Syntheses of large polycyclic aromatic hydrocarbons (PAHs) and graphene nanostructures demand methods that are capable of selectively and efficiently fusing large numbers of aromatic rings, yet such methods remain scarce. Herein, we report a new approach that is based on the quantitative intramolecular reductive cyclization of an oligo(diyne) with a low-valent zirconocene reagent, which gives a PAH with one or more annulated zirconacyclopentadienes (ZrPAHs). The efficiency of this process is demonstrated by a high-yielding fivefold intramolecular coupling to form a helical ZrPAH with 16 fused rings (from a precursor with no fused rings). Several other PAH topologies are also reported. Protodemetalation of the ZrPAHs allowed full characterization (including by X-ray crystallography) of PAHs containing one or more appended dienes with the ortho-quinodimethane (o-QDM) structure, which are usually too reactive for isolation and are potentially valuable for the fusion of additional rings by Diels-Alder reactions.
Project description:The synthesis of O-doped benzorylenes, in which peripheral carbon atoms have been replaced by oxygen atoms, has been achieved for the first time. This includes key high-yielding ring-closure steps which, through intramolecular C-O bond formation, allow stepwise planarization of oligonaphthalenes. Single-crystal X-ray diffraction showed that the tetraoxa derivative forms remarkable face-to-face π-π stacks in the solid state, a favorable solid-state arrangement for organic electronics.
Project description:In this study, we compare genomic signature safter treatment ofprimary human bronchial epithelial cells (HBEC) cultured in 3D with polycyclic aromatic hydrocarbons (PAHs) and identify genesets predictive of cancer risk.
Project description:Polycyclic aromatic hydrocarbons (PAHs) are toxic, mutagenic and among the most damaging chemical compounds with regard to living organisms. Because of their persistence and wide distribution removal from the environment is an important challenge. Here we report a new Nano container matrix based on the deep sea archaea-derived RHCC-Nanotube (RHCC-NT), which rapidly and preferentially binds low molecular weight PAHs. Under controlled-laboratory conditions and using fluorescence spectroscopy in combination with X-ray crystallography and MD simulations, we quantified the real-time binding of low molecular weight PAHs (2-4 rings) to our substrate. Binding coefficients ranged from 5.4 ± 1.6 (fluorene) to 32 ± 7.0 μM (acenaphthylene) and a binding capacity of 85 pmoles PAH per mg RHCC-NT, or 2.12 μmoles in a standard 25 mg sampler. The uptake rate of pyrene was calculated to be 1.59 nmol/hr∙mol RHCC-NT (at 10 C). Our results clearly show that RHCC-NT is uniquely suited as a monitoring matrix for low molecular weight PAHs.