Project description:This study aimed to analyze the learning style of dentistry students in self-instructional courses to assist in pedagogical planning and to choose the most appropriate educational resources for the students' learning profile. A sample of 122 students who responded to the Learning Styles Questionnaire was analyzed. For statistical purposes, correlation analysis, chi-square test, odds ratio, and Student's t-test were performed. In the analyzed sample, there was a higher prevalence of students in the theoretical and reflector styles, and a lower prevalence of students in the activist and pragmatic styles. An analysis of educational resources demonstrated the predominance of theoretical and reflective content. The data show a statistically significant reduction of about 74% in the chances of passing for the activist-pragmatists group compared to other students (χ2(1, N = 122) = 5.795, p < 0.05, odds ratio = 0.26). On the other hand, reflector students who exhibited a lower preference for the activist style had a higher chance of course completion, with a 3.33-fold increase in the likelihood of passing the course (χ2(1, N = 122) = 5.637, p < 0.05, odds ratio = 3.33). These findings highlight the importance of considering students' learning styles in educational planning and resource selection to optimize student performance. Further research is warranted to explore the implications of these findings and to investigate additional factors that may influence student success in self-instructional courses.
Project description:Students respond to classroom activities and achievement outcomes with a variety of emotions that can impact student success. One emotion students experience is anxiety, which can negatively impact student performance and persistence. This study investigated what types of classroom anxiety were related to student performance in the course and persistence in the major. Students in introductory biology classes self-reported their general class, test, communication, and social anxiety; perceived course difficulty; intention to stay in the major; and demographic variables. Final course grades were acquired from instructors. An increase in perception of course difficulty from the beginning to the end of the semester was significantly associated with lower final course grades (N = 337), particularly for females, non-Caucasians, and students who took fewer Advanced Placement (AP) courses. An increase in communication anxiety slightly increased performance. Higher general class anxiety at the beginning of the semester was associated with intention to leave the major (N = 122) at the end of the semester, particularly for females. Females, freshmen, and those with fewer AP courses reported higher general class anxiety and perceived course difficulty. Future research should identify which factors differentially impact student anxiety levels and perceived difficulty and explore coping strategies for students.
Project description:Understanding metabolic function requires knowledge of the dynamics, interdependence, and regulation of metabolic networks. However, multiple professional societies have recognized that most undergraduate biochemistry students acquire only a surface-level understanding of metabolism. We hypothesized that guiding students through interactive computer simulations of metabolic systems would increase their ability to recognize how individual interactions between components affect the behavior of a system under different conditions. The computer simulations were designed with an interactive activity (i.e., module) that used the predict-observe-explain model of instruction to guide students through a process in which they iteratively predict outcomes, test their predictions, modify the interactions of the system, and then retest the outcomes. We found that biochemistry students using modules performed better on metabolism questions compared with students who did not use the modules. The average learning gain was 8% with modules and 0% without modules, a small to medium effect size. We also confirmed that the modules did not create or reinforce a gender bias. Our modules provide instructors with a dynamic, systems-driven approach to help students learn about metabolic regulation and equip students with important cognitive skills, such as interpreting and analyzing simulation results, and technical skills, such as building and simulating computer-based models.
Project description:Logistical challenges in large enrollment classes are often mentioned as obstacles to active learning. Writing is an integral part of being a scientist and is often one of the first tools considered by STEM instructors to increase student engagement, but iterative writing assignments in large classes require creativity on the part of the instructor. We found an association between writing-to-learn assignments designed to be consistent with inclusive learning pedagogies and student performance measures in a large enrollment undergraduate biology course. They provide ample opportunity for deliberate practice and inclusive engagement, components of the "heads and hearts" hypothesis posed to explain the variation in active learning impacts on the performance of minoritized students.
Project description:Teaching introductory programming courses is not an easy task. Instructors of introductory programming courses are facing many challenges related to the nature of programming, the students' characteristics and the traditional teaching methods that they are using. Blended learning seems to be a promising approach to address these challenges. Many studies concluded that blended learning can be more effective than traditional teaching and can improve students' learning experience. However, the current state of knowledge and practice in applying blended learning to introductory programming courses is limited. In an attempt to begin remedying this gap, this review synthesizes the different blended learning approaches that have been applied in introductory programming courses. It classifies them into five models then discusses the impact of each of these models on the learning experience of novice programmers. It concludes by providing some recommendations for instructors who want to blend their courses as well as some implications for future research.
Project description:The tension between religion and science as a long-standing barrier to science education has led researchers to explore ways of improving the experiences of Christian students in biology who can experience their Christianity as stigmatized in academic biology environments. As undergraduate science classes become student-centered, interactions among students increase, and Christians may feel a need to conceal their religious identities during peer discussions. In this interview study, we used the social psychology framework of concealable stigmatized identities to explore 30 Christian students' experiences during peer interactions in undergraduate biology courses to find potential ways to improve those experiences. We found that students felt their religious identity was salient during peer interactions in biology, and students thought revealing their religious identity to peers in their biology courses could be beneficial, yet few actually did so. Additionally, though most students anticipated stigma, comparatively few had experienced stigma from other students in their biology courses, despite the prior documented cultural stigma against Christians in biology. These results indicate a need for future studies exploring the impact of learning environments in which students are given the opportunity to share their religious identities with one another, which could reduce their anticipated and perceived stigma.
Project description:Poor performance in foundational science courses, which are usually taken during the first or second year of pharmacy school, can have several negative consequences including increases in student drop-out rates and increases in the number of dismissals and remediating students. The primary goal of the current study was to determine whether completion of a pre-pharmacy biochemistry course and/or performance on a biochemistry competency test (administered at the beginning of the pharmacy program) are associated with pharmacy student performance in foundational science courses and overall academic performance. A secondary goal was to determine whether performance in pre-pharmacy courses and/or student demographics are associated with pharmacy student performance. Prospective univariate analyses (n = 75) determined that completion of a pre-pharmacy biochemistry course is not associated with pharmacy student performance. However, performance on a biochemistry competency test was associated with performance in Biochemistry and Cell&Molecular Biology (p = 0.002). Furthermore, post-hoc analyses determined that pre-pharmacy cumulative chemistry GPA correlates with performance in both the Biochemistry and Cell&Molecular Biology and Medicinal Chemistry foundational science courses (p = 0.002 and p = 0.04, respectively) and can predict first year GPA (p = 0.002). The combined data indicate that further assessment of the impact of pre-pharmacy competency in biochemistry and chemistry on pharmacy student success is warranted.
Project description:Despite the importance of scientific literacy, many foundational science courses are plagued by low student engagement and performance. In an attempt to improve student outcomes, an introductory biology course for nonscience majors was redesigned to present the course content within the framework of current events and deliberative democratic exercises. During each instructional unit of the redesigned course, students were presented with a highly publicized policy question rooted in biological principles and currently facing lawmakers. Working in diverse groups, students sought out the information that was needed to reach an educated, rationalized decision. This approach models civic engagement and demonstrates the real-life importance of science to nonscience majors. The outcomes from two semesters in which the redesign were taught were compared with sections of the course taught using traditional pedagogies. When compared with other versions of the same course, presenting the course content within a deliberative democratic framework proved to be superior for increasing students' knowledge gains and improving students' perceptions of biology and its relevance to their everyday lives. These findings establish deliberative democracy as an effective pedagogical strategy for nonmajors biology.
Project description:Higher educational institutes generate massive amounts of student data. This data needs to be explored in depth to better understand various facets of student learning behavior. The educational data mining approach has given provisions to extract useful and non-trivial knowledge from large collections of student data. Using the educational data mining method of classification, this research analyzes data of 291 university students in an attempt to predict student performance at the end of a 4-year degree program. A student segmentation framework has also been proposed to identify students at various levels of academic performance. Coupled with the prediction model, the proposed segmentation framework provides a useful mechanism for devising pedagogical policies to increase the quality of education by mitigating academic failure and encouraging higher performance. The experimental results indicate the effectiveness of the proposed framework and the applicability of classifying students into multiple performance levels using a small subset of courses being taught in the initial two years of the 4-year degree program.
Project description:Curricular reform efforts depend on our ability to determine how courses are taught and how instructional practices affect student outcomes. In this study, we developed a 30-question survey on inquiry-based learning and assessment in undergraduate laboratory courses that was administered to 878 students in 54 courses (41 introductory level and 13 upper level) from 20 institutions (four community colleges, 11 liberal arts colleges, and five universities, of which four were minority-serving institutions). On the basis of an exploratory factor analysis, we defined five constructs: metacognition, feedback and assessment, scientific synthesis, science process skills, and instructor-directed teaching. Using our refined survey of 24 items, we compared student and faculty perceptions of instructional practices both across courses and across instructors. In general, faculty and student perceptions were not significantly related. Although mean perceptions were often similar, faculty perceptions were more variable than those of students, suggesting that faculty may have more nuanced views than students. In addition, student perceptions of some instructional practices were influenced by their previous experience in laboratory courses and their self-efficacy. As student outcomes, such as learning gains, are ultimately most important, future research should examine the degree to which faculty and student perceptions of instructional practices predict student outcomes in different contexts.