Unknown

Dataset Information

0

Smx nuclease is the major, low-pH-inducible apurinic/apyrimidinic endonuclease in Streptococcus mutans.


ABSTRACT: The causative agent of dental caries in humans, Streptococcus mutans, outcompetes other bacterial species in the oral cavity and causes disease by surviving acidic conditions in dental plaque. We have previously reported that the low-pH survival strategy of S. mutans includes the ability to induce a DNA repair system that appears to involve an enzyme with exonuclease functions (K. Hahn, R. C. Faustoferri, and R. G. Quivey, Jr., Mol. Microbiol 31:1489-1498, 1999). Here, we report overexpression of the S. mutans apurinic/apyrimidinic (AP) endonuclease, Smx, in Escherichia coli; initial characterization of its enzymatic activity; and analysis of an smx mutant strain of S. mutans. Insertional inactivation of the smx gene eliminates the low-pH-inducible exonuclease activity previously reported. In addition, loss of Smx activity renders the mutant strain sensitive to hydrogen peroxide treatment but relatively unaffected by acid-mediated damage or near-UV irradiation. The smx strain of S. mutans was highly sensitive to the combination of iron and hydrogen peroxide, indicating the likely production of hydroxyl radical by Fenton chemistry with concomitant formation of AP sites that are normally processed by the wild-type allele. Smx activity was sufficiently expressed in E. coli to protect an xth mutant strain from the effects of hydrogen peroxide treatment. The data indicate that S. mutans expresses an inducible, class II-like AP endonuclease, encoded by the smx gene, that exhibits exonucleolytic activity and is regulated as part of the acid-adaptive response of the organism. Smx is likely the primary, if not the sole, AP endonuclease induced during growth at low pH values.

SUBMITTER: Faustoferri RC 

PROVIDER: S-EPMC1070388 | biostudies-literature | 2005 Apr

REPOSITORIES: biostudies-literature

altmetric image

Publications

Smx nuclease is the major, low-pH-inducible apurinic/apyrimidinic endonuclease in Streptococcus mutans.

Faustoferri Roberta C RC   Hahn Kristina K   Weiss Kellie K   Quivey Robert G RG  

Journal of bacteriology 20050401 8


The causative agent of dental caries in humans, Streptococcus mutans, outcompetes other bacterial species in the oral cavity and causes disease by surviving acidic conditions in dental plaque. We have previously reported that the low-pH survival strategy of S. mutans includes the ability to induce a DNA repair system that appears to involve an enzyme with exonuclease functions (K. Hahn, R. C. Faustoferri, and R. G. Quivey, Jr., Mol. Microbiol 31:1489-1498, 1999). Here, we report overexpression o  ...[more]

Similar Datasets

| S-EPMC3901322 | biostudies-literature
| S-EPMC3624277 | biostudies-literature
| S-EPMC4543664 | biostudies-literature
| S-EPMC5379662 | biostudies-literature
| S-EPMC3706204 | biostudies-literature
| S-EPMC2862823 | biostudies-literature
| S-EPMC6583781 | biostudies-literature
| S-EPMC3731287 | biostudies-literature
| S-EPMC7833210 | biostudies-literature
| S-EPMC3448856 | biostudies-literature