Unknown

Dataset Information

0

Exosomes from bone marrow mesenchymal stem cells ameliorate glucocorticoid-induced osteonecrosis of femoral head by transferring microRNA-210 into bone microvascular endothelial cells.


ABSTRACT:

Objectives

Bone microvascular endothelial cells (BMECs) played an important role in the pathogenesis of glucocorticoid-induced osteonecrosis of femoral head (GCS-ONFH), and exosomes derived from bone marrow mesenchymal stem cells (BMSC-Exos) may provide an effective treatment. This study aimed to evaluate the effects of BMSC-Exos and internal microRNA-210-3p (miRNA-210) on GCS-ONFH in an in vitro hydrocortisone-induced BMECs injury model and an in vivo rat GCS-ONFH model.

Methods

BMECs, BMSCs and BMSC-Exos were isolated and validated. BMECs after the treatment of hydrocortisone were cocultured with different concentrations of BMSC-Exos, then proliferation, migration, apoptosis and angiogenesis of BMECs were evaluated by CCK-8, Annexin V-FITC/PI, cell scratch and tube formation assays. BMSCs were transfected with miRNA-210 mimics and miRNA-210 inhibitors, then BMSC-ExosmiRNA-210 mimic and BMSC-ExosmiRNA-210 inhibitor secreted from such cells were collected. The differences between BMSC-Exos, BMSC-ExosmiRNA-210 mimic and BMSC-ExosmiRNA-210 inhibitor in protecting BMECs against GCS treatment were analyzed by methods mentioned above. Intramuscular injections of methylprednisolone were performed on Sprague-Dawley rats to establish an animal model of GCS-ONFH, then tail intravenous injections of BMSC-Exos, BMSC-ExosmiRNA-210 mimic or BMSC-ExosmiRNA-210 inhibitor were conducted after methylprednisolone injection. Histological and immunofluorescence staining and micro-CT were performed to evaluate the effects of BMSC-Exos and internal miRNA-210 on the in vivo GCS-ONFH model.

Results

Different concentrations of BMSC-Exos, especially high concentration of BMSC-Exos, could enhance the proliferation, migration and angiogenesis ability and reduce the apoptosis rates of BMECs treated with GCS. Compared with BMSC-Exos, BMSC-ExosmiRNA-210 mimic could further enhance the proliferation, migration and angiogenesis ability and reduce the apoptosis rates of BMECs, while BMECs in the GCS + BMSC-ExosmiRNA-210 inhibitor group showed reduced proliferation, migration and angiogenesis ability and higher apoptosis rates. In the rat GCS-ONFH model, BMSC-Exos, especially BMSC-ExosmiRNA-210 mimic, could increase microvascular density and enhance bone remodeling of femoral heads.

Conclusions

BMSC-Exos containing miRNA-210 could serve as potential therapeutics for protecting BMECs and ameliorating the progression of GCS-ONFH.

SUBMITTER: Zheng C 

PROVIDER: S-EPMC10704824 | biostudies-literature | 2023 Dec

REPOSITORIES: biostudies-literature

altmetric image

Publications

Exosomes from bone marrow mesenchymal stem cells ameliorate glucocorticoid-induced osteonecrosis of femoral head by transferring microRNA-210 into bone microvascular endothelial cells.

Zheng Che C   Wu Yuangang Y   Xu Jiawen J   Liu Yuan Y   Ma Jun J  

Journal of orthopaedic surgery and research 20231207 1


<h4>Objectives</h4>Bone microvascular endothelial cells (BMECs) played an important role in the pathogenesis of glucocorticoid-induced osteonecrosis of femoral head (GCS-ONFH), and exosomes derived from bone marrow mesenchymal stem cells (BMSC-Exos) may provide an effective treatment. This study aimed to evaluate the effects of BMSC-Exos and internal microRNA-210-3p (miRNA-210) on GCS-ONFH in an in vitro hydrocortisone-induced BMECs injury model and an in vivo rat GCS-ONFH model.<h4>Methods</h4>  ...[more]

Similar Datasets

| S-EPMC11268171 | biostudies-literature
| S-EPMC10031038 | biostudies-literature
| S-EPMC7754047 | biostudies-literature
| S-EPMC4726266 | biostudies-literature
| S-EPMC11358393 | biostudies-literature
| S-EPMC2889316 | biostudies-literature
| S-EPMC11590306 | biostudies-literature
| S-EPMC7435053 | biostudies-literature
| S-EPMC9305845 | biostudies-literature
| S-EPMC11316067 | biostudies-literature