Ontology highlight
ABSTRACT: Importance
Heat stress is one of the main causes of economic losses in the dairy industry worldwide; however, the mechanisms associated with the metabolic and microbial changes in heat stress remain unclear. Here, we characterized both the changes in metabolites, rumen microbial communities, and their functional potential indices derived from rumen fluid and serum samples from cows at different growth stages and under different climates. This study highlights that the rumen microbe may be involved in the regulation of lipid metabolism by modulating the fatty acyl metabolites. Under heat stress, the changes in the metabolic status of growing heifers, heifers, and lactating cows were closely related to arachidonic acid metabolism, fatty acid biosynthesis, and energy metabolism. Moreover, this study provides new markers for further research to understand the effects of heat stress on the physiological metabolism of Holstein cows and the time-dependent changes associated with growth stages.
SUBMITTER: Feng L
PROVIDER: S-EPMC10714726 | biostudies-literature | 2023 Nov
REPOSITORIES: biostudies-literature
Feng Lei L Zhang Yu Y Liu Wei W Du Dewei D Jiang Wenbo W Wang Zihua Z Li Ning N Hu Zhiyong Z
Microbiology spectrum 20231116 6
<h4>Importance</h4>Heat stress is one of the main causes of economic losses in the dairy industry worldwide; however, the mechanisms associated with the metabolic and microbial changes in heat stress remain unclear. Here, we characterized both the changes in metabolites, rumen microbial communities, and their functional potential indices derived from rumen fluid and serum samples from cows at different growth stages and under different climates. This study highlights that the rumen microbe may b ...[more]