Ontology highlight
ABSTRACT:
SUBMITTER: Ma L
PROVIDER: S-EPMC10724364 | biostudies-literature | 2023 Dec
REPOSITORIES: biostudies-literature
Ma Liantao L Zhang Chaohe C Gao Junyi J Jiao Xianfeng X Yu Zhihao Z Zhu Yinghao Y Wang Tianlong T Ma Xinyu X Wang Yasha Y Tang Wen W Zhao Xinju X Ruan Wenjie W Wang Tao T
Patterns (New York, N.Y.) 20231208 12
The study aims to develop AICare, an interpretable mortality prediction model, using electronic medical records (EMR) from follow-up visits for end-stage renal disease (ESRD) patients. AICare includes a multichannel feature extraction module and an adaptive feature importance recalibration module. It integrates dynamic records and static features to perform personalized health context representation learning. The dataset encompasses 13,091 visits and demographic data of 656 peritoneal dialysis ( ...[more]