Project description:Branching is an important agronomic and economic trait in cut chrysanthemums. The axillary meristem (AM) formation of the axillary buds of cut chrysanthemums has a decisive role in its branching characteristics. However, little is known about the regulation mechanism of axillary meristem formation in chrysanthemums at the molecular level. Members of the Homeobox gene family especially genes belonging to the class I KNOX branch play a key role in regulating the axillary bud growth and development processes of plants. In this study, three genes belonging to the class I KNOX branch, CmKNAT1, CmKNAT6, and CmSTM were cloned from chrysanthemums, and their functions in regulating axillary bud formation were examined. The subcellular localization test showed that these three KNOX genes were expressed in the nucleus, so all of them might function as transcription factors. The results of the expression profile analysis showed that these three KNOX genes were highly expressed in the AM formation stage of axillary buds. Overexpression of KNOX genes result in a wrinkled leaf phenotype in tobacco and Arabidopsis, which may be related to the excessive division of leaf cells, resulting in the proliferation of leaf tissue. Furthermore, overexpression of these three KNOX genes enhances the regeneration ability of tobacco leaves, indicating that these three KNOX genes may participate in the regulation of cell meristematic ability, thus promoting the formation of buds. In addition, the results of fluorescence quantitative testing showed that these three KNOX genes may promote the formation of chrysanthemum axillary buds by promoting the cytokinin pathway while inhibiting the auxin and gibberellin pathways. In conclusion, this study demonstrated that CmKNAT1, CmKNAT6, and CmSTM genes were involved in regulating axillary bud formation of Chrysanthemum × morifolium and preliminarily revealed the molecular mechanism of their regulation of AM formation. These findings may provide a theoretical basis and candidate gene resources for genetic engineering breeding of new varieties of cut chrysanthemums without lateral branches.
Project description:We previously demonstrated that 20 mM sucrose promotes the upper axillary bud outgrowth in two-node stems of Chrysanthemum morifolium. In this study, we aimed to screen for potential genes involved in this process. Quantitative reverse transcription (qRT)-PCR analysis of sugar-related genes in the upper axillary bud of plants treated with 20 mM sucrose revealed the specific expression of the gene CmSWEET17. Expression of this gene was increased in the bud, as well as the leaves of C. morifolium, following exogenous sucrose treatment. CmSWEET17 was isolated from C. morifolium and a subcellular localization assay confirmed that the protein product was localized in the cell membrane. Overexpression of CmSWEET17 promoted upper axillary bud growth in the two-node stems treatment as compared with the wild-type. In addition, the expression of auxin transporter genes CmAUX1, CmLAX2, CmPIN1, CmPIN2, and CmPIN4 was upregulated in the upper axillary bud of CmSWEET17 overexpression lines, while indole-3-acetic acid content decreased. The results suggest that CmSWEET17 could be involved in the process of sucrose-induced axillary bud outgrowth in C. morifolium, possibly via the auxin transport pathway.
Project description:Temperature is an important factor that largely affects the patterns of shoot branching in plants. However, the effect and mechanism of temperature on axillary bud development in chrysanthemum remains poorly defined. The purpose of the present study is to investigate the effect of high temperature on the axillary bud growth and the mechanism of axillary bud formation in chrysanthemum. Decapitation experiments combined with the transcriptome analysis were designed. Results showed that the axillary bud length was significantly inhibited by high temperature. Decapitation of primary shoot (primary decapitation) resulted in slower growth of axillary buds (secondary buds) under 35 °C. However, secondary decapitation resulted in complete arrest of tertiary buds at high temperature. These results demonstrated that high temperature not only inhibited axillary bud formation but also retarded bud outgrowth in chrysanthemum. Comparative transcriptome suggested differentially expressed gene sets and identified important modules associated with bud formation. This research helped to elucidate the regulatory mechanism of high temperature on axillary bud growth, especially bud formation in chrysanthemum. Meanwhile, in-depth studies of this imperative temperature signaling can offer the likelihood of vital future applications in chrysanthemum breeding and branching control.
Project description:There has been a heated argument over self-incompatibilityof chrysanthemum (Chrysanthemum morifolium) among chrysanthemum breeders. In order to solve the argument, we investigated pistil receptivity, seed set, and compatible index of 24 chrysanthemum cultivars. It was found that the 24 cultivars averagely had 3.7-36.3 pollen grains germinating on stigmas at 24 hours after self-pollination through the fluorescence microscope using aniline blue staining method. However, only 10 of them produced self-pollinated seeds, and their seed sets and compatible indexes were 0.03-56.50% and 0.04-87.50, respectively. The cultivar "Q10-33-1" had the highest seed set (56.50%) and compatible index (87.50), but ten of its progeny had a wide range of separation in seed set (0-37.23%) and compatible index (0-68.65). The results indicated that most of chrysanthemum cultivars were self-incompatible, while a small proportion of cultivars were self-compatible. In addition, there is a comprehensive separation of self-incompatibility among progeny from the same self-pollinated self-compatible chrysanthemum cultivar. Therefore, it is better to emasculate inflorescences during chrysanthemum hybridization breeding when no information concerning its self-incompatibility characteristics is available. However, if it is self-incompatible and propagated by vegetative methods, it is unnecessary to carry out emasculation when it is used as a female plant during hybridization breeding.
Project description:MicroRNAs (miRNAs) are important regulators of gene expression, affecting many biological processes. As yet, their roles in the response of chrysanthemum to aphid feeding have not been explored. Here, the identity and abundance of miRNAs induced by aphid infestation have been obtained using high-throughput Illumina sequencing platform. Three leaf small RNA libraries were generated, one from plants infested with the aphid Macrosiphoniella sanbourni (library A), one from plants with mock puncture treatment (library M), and the third from untreated control plants (library CK). A total of 7,944,797, 7,605,251 and 9,244,002 clean unique reads, ranging from 18 to 30 nucleotides (nt) in length, were obtained from library CK, A and M, respectively. As a result, 303 conserved miRNAs belonging to 276 miRNAs families and 234 potential novel miRNAs were detected in chrysanthemum leaf, out of which 80, 100 and 79 significantly differentially expressed miRNAs were identified in the comparison of CK-VS-A, CK-VS-M and M-VS-A, respectively. Several of the differentially abundant miRNAs (in particular miR159a, miR160a, miR393a) may be associated with the plant's response to aphid infestation.
Project description:Chrysanthemum morifolium is an ornamentally and medicinally important plant species. Up to date, molecular and genetic investigations have largely focused on determination of flowering time in the ornamental species. However, little is known about gene regulatory networks for the biosynthesis of flavonoids in the medicinal species. In the current study, we employed the high-throughput sequencing technology to profile the genome-wide transcriptome of C. morifolium 'Chuju', a famous medicinal species in traditional Chinese medicine. A total of 63,854 unigenes with an average length of 741 bp were obtained. Bioinformatic analysis has identified a great number of structural and regulatory unigenes potentially participating in the flavonoid biosynthetic pathway. According to the comparison of digital gene expression, 8,370 (3,026 up-regulated and 5,344 down-regulated), 1,348 (717 up-regulated and 631 down-regulated) and 944 (206 up-regulated and 738 down-regulated) differentially expressed unigenes (DEUs) were detected in the early, middle and mature growth phases, respectively. Among them, many DEUs were implicated in controlling the biosynthesis and composition of flavonoids from the budding to full blooming stages during flower development. Furthermore, the expression patterns of 12 unigenes involved in flavonoid biosynthesis were generally validated by using quantitative real time PCR. These findings could shed light on the molecular basis of flavonoid biosynthesis in C. morifolium 'Chuju' and provide a genetic resource for breeding varieties with improved nutritional quality.
Project description:Chrysanthemum is one of the most commercially used ornamental flowering plants in the world. As chrysanthemum is self-incompatible, the propagation of identical varieties is carried out through cuttings rather than through seed. Axillary bud development can be controlled by changing the temperature; for instance, axillary bud development in some varieties is suppressed at high temperatures. In this study, we focused on the simultaneous axillary bud growth from multiple lines of chrysanthemum upon changing conditions from low to normal temperature. Transcriptome analysis was conducted on the Chrysanthemum morifolium cultivar 'Jinba' to identify the important genes for axillary bud development seen when moved from low-temperature treatment to normal cultivation temperature. We performed RNA-Seq analysis on plants after cold conditions in two-day time-course experiments. Under these settings, we constructed a transcriptome of 415,923 C. morifolium and extracted 7357 differentially expressed genes. Our understanding of Arabidopsis axillary meristem development and growth showed that at least 101 genes in our dataset were homologous to transcription factors involved in the biological process. In addition, six genes exhibited statistically significant variations in expression throughout conditions. We hypothesized that these genes were involved in the formation of axillary buds in C. morifolium after cold conditions.
Project description:BackgroundAxillary bud is an important agronomic and economic trait in cut chrysanthemum. Bud outgrowth is an intricate process controlled by complex molecular regulatory networks, physio-chemical integrators and environmental stimuli. Temperature is one of the key regulators of bud's fate. However, little is known about the temperature-mediated control of axillary bud at molecular levels in chrysanthemum. A comprehensive study was designed to study the bud outgrowth at normal and elevated temperature in cut chrysanthemum. Leaf morphology, histology, physiological parameters were studied to correlate the leaf activity with bud morphology, sucrose and hormonal regulation and the molecular controllers.ResultsTemperature caused differential bud outgrowth along bud positions. Photosynthetic leaf area, physiological indicators and sucrose utilization were changed considerable due to high temperature. Comparative transcriptome analysis identified a significant proportion of bud position-specific genes.Weighted Gene Co-expression Network Analysis (WGCNA) showed that axillary bud control can be delineated by modules of coexpressed genes; especially, MEtan3, MEgreen2 and MEantiquewhite presented group of genes specific to bud length. A comparative analysis between different bud positions in two temperatures revealed the morpho-physiological traits associated with specific modules. Moreover, the transcriptional regulatory networks were configured to identify key determinants of bud outgrowth. Cell division, organogenesis, accumulation of storage compounds and metabolic changes were prominent during the bud emergence.ConclusionsRNA-seq data coupled with morpho-physiological integrators from three bud positions at two temperature regimes brings a robust source to understand bud outgrowth status influenced by high temperature in cut chrysanthemum. Our results provide helpful information for elucidating the regulatory mechanism of temperature on axillary bud growth in chrysanthemum.
Project description:BACKGROUND:Aphid (Macrosiphoniella sanbourni) stress drastically influences the yield and quality of chrysanthemum, and grafting has been widely used to improve tolerance to biotic and abiotic stresses. However, the effect of grafting on the resistance of chrysanthemum to aphids remains unclear. Therefore, we used the RNA-Seq platform to perform a de novo transcriptome assembly to analyze the self-rooted grafted chrysanthemum (Chrysanthemum morifolium T. 'Hangbaiju') and the grafted Artermisia-chrysanthemum (grafted onto Artemisia scoparia W.) transcription response to aphid stress. RESULTS:The results showed that there were 1337 differentially expressed genes (DEGs), among which 680 were upregulated and 667 were downregulated, in the grafted Artemisia-chrysanthemum compared to the self-rooted grafted chrysanthemum. These genes were mainly involved in sucrose metabolism, the biosynthesis of secondary metabolites, the plant hormone signaling pathway and the plant-to-pathogen pathway. KEGG and GO enrichment analyses revealed the coordinated upregulation of these genes from numerous functional categories related to aphid stress responses. In addition, we determined the physiological indicators of chrysanthemum under aphid stress, and the results were consistent with the molecular sequencing results. All evidence indicated that grafting chrysanthemum onto A. scoparia W. upregulated aphid stress responses in chrysanthemum. CONCLUSION:In summary, our study presents a genome-wide transcript profile of the self-rooted grafted chrysanthemum and the grafted Artemisia-chrysanthemum and provides insights into the molecular mechanisms of C. morifolium T. in response to aphid infestation. These data will contribute to further studies of aphid tolerance and the exploration of new candidate genes for chrysanthemum molecular breeding.
Project description:BackgroundChrysanthemum (Chrysanthemum × morifolium) is one of the four major cut flowers worldwide and is valued for ornamental, culinary, and medicinal purposes. Terpenoids are key components of the fragrance of chrysanthemum; they not only serve to repel insect herbivores and promote pollination but also impact the value of the plant. However, the terpene production of chrysanthemum and the regulatory mechanisms involved remain unclear.ResultsWe used gas chromatography‒mass spectrometry (GC‒MS) to identify 177 compounds, including 106 terpenes, in ten chrysanthemum cultivars. Monoterpene derivatives and sesquiterpenes were the most common. Next, we identified 27 candidate hub genes for terpene production in chrysanthemum via combined transcriptome and metabolome analysis, as well as weighted gene coexpression network analysis. The three terpenes synthesis-related genes were significantly expressed in the disc florets of the different chrysanthemum cultivars. We concluded that the transcription factors TCP8, TCP5, ATHB8, ATHB7, HAT22, TGA1, TGA4, and WHY1 may regulate terpene synthesis.ConclusionsIn this study, we profiled terpenes in chrysanthemum florets and constructed a key terpene-transcription factor network related to terpene synthesis. These findings lay the groundwork for future research into the mechanism of terpene synthesis in chrysanthemum as well as in other plants.