Unknown

Dataset Information

0

Kepler Algorithm for Large-Scale Systems of Economic Dispatch with Heat Optimization.


ABSTRACT: Combined Heat and Power Units Economic Dispatch (CHPUED) is a challenging non-convex optimization challenge in the power system that aims at decreasing the production cost by scheduling the heat and power generation outputs to dedicated units. In this article, a Kepler optimization algorithm (KOA) is designed and employed to handle the CHPUED issue under valve points impacts in large-scale systems. The proposed KOA is used to forecast the position and motion of planets at any given time based on Kepler's principles of planetary motion. The large 48-unit, 96-unit, and 192-unit systems are considered in this study to manifest the superiority of the developed KOA, which reduces the fuel costs to 116,650.0870 USD/h, 234,285.2584 USD/h, and 487,145.2000 USD/h, respectively. Moreover, the dwarf mongoose optimization algorithm (DMOA), the energy valley optimizer (EVO), gray wolf optimization (GWO), and particle swarm optimization (PSO) are studied in this article in a comparative manner with the KOA when considering the 192-unit test system. For this large-scale system, the presented KOA successfully achieves improvements of 19.43%, 17.49%, 39.19%, and 62.83% compared to the DMOA, the EVO, GWO, and PSO, respectively. Furthermore, a feasibility study is conducted for the 192-unit test system, which demonstrates the superiority and robustness of the proposed KOA in obtaining all operating points between the boundaries without any violations.

SUBMITTER: Hakmi SH 

PROVIDER: S-EPMC10741829 | biostudies-literature | 2023 Dec

REPOSITORIES: biostudies-literature

altmetric image

Publications

Kepler Algorithm for Large-Scale Systems of Economic Dispatch with Heat Optimization.

Hakmi Sultan Hassan SH   Shaheen Abdullah M AM   Alnami Hashim H   Moustafa Ghareeb G   Ginidi Ahmed A  

Biomimetics (Basel, Switzerland) 20231214 8


Combined Heat and Power Units Economic Dispatch (CHPUED) is a challenging non-convex optimization challenge in the power system that aims at decreasing the production cost by scheduling the heat and power generation outputs to dedicated units. In this article, a Kepler optimization algorithm (KOA) is designed and employed to handle the CHPUED issue under valve points impacts in large-scale systems. The proposed KOA is used to forecast the position and motion of planets at any given time based on  ...[more]

Similar Datasets

| S-EPMC9243145 | biostudies-literature
| S-EPMC3948477 | biostudies-other
| S-EPMC2798956 | biostudies-literature
| S-EPMC6170104 | biostudies-literature
| S-EPMC8791528 | biostudies-literature
| S-EPMC3218420 | biostudies-other
| S-BSST207 | biostudies-other
| S-EPMC11008891 | biostudies-literature
| S-EPMC10716760 | biostudies-literature
| S-EPMC3332257 | biostudies-literature