Unknown

Dataset Information

0

Pyrimidine salvage in Toxoplasma gondii as a target for new treatment.


ABSTRACT: Toxoplasmosis is a common protozoan infection that can have severe outcomes in the immunocompromised and during pregnancy, but treatment options are limited. Recently, nucleotide metabolism has received much attention as a target for new antiprotozoal agents and here we focus on pyrimidine salvage by Toxoplasma gondii as a drug target. Whereas uptake of [3H]-cytidine and particularly [3H]-thymidine was at most marginal, [3H]-uracil and [3H]-uridine were readily taken up. Kinetic analysis of uridine uptake was consistent with a single transporter with a Km of 3.3 ± 0.8 µM, which was inhibited by uracil with high affinity (Ki = 1.15 ± 0.07 µM) but not by thymidine or 5-methyluridine, showing that the 5-Me group is incompatible with uptake by T. gondii. Conversely, [3H]-uracil transport displayed a Km of 2.05 ± 0.40 µM, not significantly different from the uracil Ki on uridine transport, and was inhibited by uridine with a Ki of 2.44 ± 0.59 µM, also not significantly different from the experimental uridine Km. The reciprocal, complete inhibition, displaying Hill slopes of approximately -1, strongly suggest that uridine and uracil share a single transporter with similarly high affinity for both, and we designate it uridine/uracil transporter 1 (TgUUT1). While TgUUT1 excludes 5-methyl substitutions, the smaller 5F substitution was tolerated, as 5F-uracil inhibited uptake of [3H]-uracil with a Ki of 6.80 ± 2.12 µM (P > 0.05 compared to uracil Km). Indeed, we found that 5F-Uridine, 5F-uracil and 5F,2'-deoxyuridine were all potent antimetabolites against T. gondii with EC50 values well below that of the current first line treatment, sulfadiazine. In vivo evaluation also showed that 5F-uracil and 5F,2'-deoxyuridine were similarly effective as sulfadiazine against acute toxoplasmosis. Our preliminary conclusion is that TgUUT1 mediates potential new anti-toxoplasmosis drugs with activity superior to the current treatment.

SUBMITTER: Elati HAA 

PROVIDER: S-EPMC10755004 | biostudies-literature | 2023

REPOSITORIES: biostudies-literature

altmetric image

Publications

Pyrimidine salvage in <i>Toxoplasma gondii</i> as a target for new treatment.

Elati Hamza A A HAA   Goerner Amber L AL   Martorelli Di Genova Bruno B   Sheiner Lilach L   de Koning Harry P HP  

Frontiers in cellular and infection microbiology 20231215


Toxoplasmosis is a common protozoan infection that can have severe outcomes in the immunocompromised and during pregnancy, but treatment options are limited. Recently, nucleotide metabolism has received much attention as a target for new antiprotozoal agents and here we focus on pyrimidine salvage by <i>Toxoplasma gondii</i> as a drug target. Whereas uptake of [<sup>3</sup>H]-cytidine and particularly [<sup>3</sup>H]-thymidine was at most marginal, [<sup>3</sup>H]-uracil and [<sup>3</sup>H]-urid  ...[more]

Similar Datasets

| S-EPMC3435209 | biostudies-literature
| S-EPMC5038078 | biostudies-literature
| S-EPMC7728818 | biostudies-literature
| S-EPMC6345969 | biostudies-literature
| S-EPMC6369123 | biostudies-literature
| S-EPMC3855825 | biostudies-literature
| S-EPMC4857766 | biostudies-literature
| S-EPMC10033509 | biostudies-literature
| S-EPMC10102396 | biostudies-literature
| S-EPMC10185354 | biostudies-literature