Project description:Individuals often differ in competitive ability, which can lead to the formation of a dominance hierarchy that governs differential access to resources. Previous studies of dominance have predominently focussed on within-species interactions, while the drivers of between-species competitive hierarchies are poorly understood. The increasing prevalence of predictable anthropogenic food subsidies, such as that provided by garden bird feeders, is likely to intensify between-species competition. However, the consequences for resource acquisition await detailed study, and in particular, whether competitive interactions are influenced by food quality is not known. Here, we examine competitive interactions amongst ten passerine species of birds utilising supplementary food sources of differing quality. We show that dominance rank is strongly predicted by body mass across species. Socially dominant, heavier species monopolised access to a food that had a relatively short handling time (sunflower hearts), spent longer on supplementary feeders, and pecked at lower rates. In contrast subordinate, lighter species were constrained to feed on a food that had a relatively long handling time (sunflower seeds with the hull intact). Our findings suggest that differences in body mass may result in between-species dominance hierarchies that place the heaviest species in the greatest control of supplementary feeding sites, gaining superior access to higher value foods. This may have important implications for the use of supplementary feeding as a conservation tool.
Project description:Members of a social species need to make appropriate decisions about who, how, and when to interact with others in their group. However, it has been difficult for researchers to detect the inputs to these decisions and, in particular, how much information individuals actually have about their social context. We present a method that can serve as a social assay to quantify how patterns of aggression depend upon information about the ranks of individuals within social dominance hierarchies. Applied to existing data on aggression in 172 social groups across 85 species in 23 orders, it reveals three main patterns of rank-dependent social dominance: the downward heuristic (aggress uniformly against lower-ranked opponents), close competitors (aggress against opponents ranked slightly below self), and bullying (aggress against opponents ranked much lower than self). The majority of the groups (133 groups, 77%) follow a downward heuristic, but a significant minority (38 groups, 22%) show more complex social dominance patterns (close competitors or bullying) consistent with higher levels of social information use. These patterns are not phylogenetically constrained and different groups within the same species can use different patterns, suggesting that heuristic use may depend on context and the structuring of aggression by social information should not be considered a fixed characteristic of a species. Our approach provides opportunities to study the use of social information within and across species and the evolution of social complexity and cognition.
Project description:The widespread existence of dominance hierarchies has been a central puzzle in social evolution, yet we lack a framework for synthesizing the vast empirical data on hierarchy structure in animal groups. We applied network motif analysis to compare the structures of dominance networks from data published over the past 80 years. Overall patterns of dominance relations, including some aspects of non-interactions, were strikingly similar across disparate group types. For example, nearly all groups exhibited high frequencies of transitive triads, whereas cycles were very rare. Moreover, pass-along triads were rare, and double-dominant triads were common in most groups. These patterns did not vary in any systematic way across taxa, study settings (captive or wild) or group size. Two factors significantly affected network motif structure: the proportion of dyads that were observed to interact and the interaction rates of the top-ranked individuals. Thus, study design (i.e. how many interactions were observed) and the behaviour of key individuals in the group could explain much of the variations we see in social hierarchies across animals. Our findings confirm the ubiquity of dominance hierarchies across all animal systems, and demonstrate that network analysis provides new avenues for comparative analyses of social hierarchies.
Project description:Linear dominance hierarchies, which are common in social animals, can profoundly influence access to limited resources, reproductive opportunities and health. In spite of their importance, the mechanisms that govern the dynamics of such hierarchies remain unclear. Two hypotheses explain how linear hierarchies might emerge and change over time. The 'prior attributes hypothesis' posits that individual differences in fighting ability directly determine dominance ranks. By contrast, the 'social dynamics hypothesis' posits that dominance ranks emerge from social self-organization dynamics such as winner and loser effects. While the prior attributes hypothesis is well supported in the literature, current support for the social dynamics hypothesis is limited to experimental studies that artificially eliminate or minimize individual differences in fighting abilities. Here, we present the first evidence supporting the social dynamics hypothesis in a wild population. Specifically, we test for winner and loser effects on male hierarchy dynamics in wild baboons, using a novel statistical approach based on the Elo rating method for cardinal rank assignment, which enables the detection of winner and loser effects in uncontrolled group settings. Our results demonstrate (i) the presence of winner and loser effects, and (ii) that individual susceptibility to such effects may have a genetic basis. Taken together, our results show that both social self-organization dynamics and prior attributes can combine to influence hierarchy dynamics even when agonistic interactions are strongly influenced by differences in individual attributes. We hypothesize that, despite variation in individual attributes, winner and loser effects exist (i) because these effects could be particularly beneficial when fighting abilities in other group members change over time, and (ii) because the coevolution of prior attributes and winner and loser effects maintains a balance of both effects.
Project description:Interspecific dominance hierarchies have been widely reported across animal systems. High-ranking species are expected to monopolize more resources than low-ranking species via resource monopolization. In some ant species, dominance hierarchies have been used to explain species coexistence and community structure. However, it remains unclear whether or in what contexts dominance hierarchies occur in tropical ant communities. This study seeks to examine whether arboreal twig-nesting ants competing for nesting resources in a Mexican coffee agricultural ecosystem are arranged in a linear dominance hierarchy. We described the dominance relationships among 10 species of ants and measured the uncertainty and steepness of the inferred dominance hierarchy. We also assessed the orderliness of the hierarchy by considering species interactions at the network level. Based on the randomized Elo-rating method, we found that the twig-nesting ant species Myrmelachista mexicana ranked highest in the ranking, while Pseudomyrmex ejectus was ranked as the lowest in the hierarchy. Our results show that the hierarchy was intermediate in its steepness, suggesting that the probability of higher ranked species winning contests against lower ranked species was fairly high. Motif analysis and significant excess of triads further revealed that the species networks were largely transitive. This study highlights that some tropical arboreal ant communities organize into dominance hierarchies.
Project description:Social hierarchies are ubiquitous in all human relations since birth, but little is known about how they emerge during infancy. Previous studies have shown that infants can represent hierarchical relationships when they arise from the physical superiority of one agent over the other, but humans have the capacity to allocate social status in others through cues that not necessary entail agents' physical formidability. Here we investigate infants' capacity to recognize the social status of different agents when there are no observable cues of physical dominance. Our results evidence that a first presentation of the agents' social power when obtaining resources is enough to allow infants predict the outputs of their future. Nevertheless, this capacity arises later (at 18 month-olds but not at 15 month-olds) than showed in previous studies, probably due the increased complexity of the inferences needed to make the predictions.
Project description:Dominance hierarchies confer benefits to group members by decreasing the incidences of physical conflict, but may result in certain lower ranked individuals consistently missing out on access to resources. Here, we report a linear dominance hierarchy remaining stable over time in a closed population of birds. We show that this stability can be disrupted, however, by the artificial mass loading of birds that typically comprise the bottom 50% of the hierarchy. Mass loading causes these low-ranked birds to immediately become more aggressive and rise-up the dominance hierarchy; however, this effect was only evident in males and was absent in females. Removal of the artificial mass causes the hierarchy to return to its previous structure. This interruption of a stable hierarchy implies a strong direct link between body mass and social behaviour and suggests that an individual's personality can be altered by the artificial manipulation of body mass.
Project description:The presence and intensity of red coloration correlate with male dominance and testosterone in a variety of animal species, and even artificial red stimuli can influence dominance interactions. In humans, red stimuli are perceived as more threatening and dominant than other colours, and wearing red increases the probability of winning sporting contests. We investigated whether red clothing biases the perception of aggression and dominance outside of competitive settings, and whether red influences decoding of emotional expressions. Participants rated digitally manipulated images of men for aggression and dominance and categorized the emotional state of these stimuli. Men were rated as more aggressive and more dominant when presented in red than when presented in either blue or grey. The effect on perceived aggression was found for male and female raters, but only male raters were sensitive to red as a signal of dominance. In a categorization test, images were significantly more often categorized as 'angry' when presented in the red condition, demonstrating that colour stimuli affect perceptions of emotions. This suggests that the colour red may be a cue used to predict propensity for dominance and aggression in human males.
Project description:Predation and competition are critical processes influencing the ecology of organisms, and can play an integral role in shaping coral reef fish communities. This study compared the relative and interacting effects of competition and predation on two competing species of coral reef fish, Pomacentrus amboinensis and P. moluccensis (Pomacentridae), using a multifactorial experiment. Fish were subjected to the sight and smell of a known predator (Pseudochromis fuscus), the presence of the heterospecific competitor (i.e., P. amboinensis vs. P. moluccensis), or a combination of the two for a period of 19 days. The sub-lethal effects of predator/competitor treatments were compared with controls; a combination of otolith microstructure analysis and observations were used to determine otolith growth patterns and behaviour. We predicted that the stress of competition and/or predation would result in strong sub-lethal impacts, and act synergistically on growth and behavioural patterns. We found strong evidence to support this prediction, but only for P. amboinensis, which suffered reductions in growth in both predator and competitor treatments, with the largest reductions occurring when subjected to both predation and competition concurrently. There was strong evidence of asymmetrical competition between the two damselfish species, with P. moluccensis as the dominant competitor, displaying strong aggressive behaviour towards P. amboinensis. Growth reductions for P. amboinensis in predator/competitor treatments appeared to come about primarily due to increases in shelter seeking behaviour, which significantly reduced the foraging rates of individuals compared with controls. These data highlight the importance of predator/competitor synergisms in influencing key behaviours and demographic parameters for juvenile coral reef fishes.
Project description:Traits that mediate intraspecific social interactions may overlap in closely related sympatric species, resulting in costly between-species interactions. Such interactions have principally interested investigators studying the evolution of reproductive isolation via reproductive character displacement (RCD) or reinforcement, yet in addition to reproductive interference, interspecific trait overlap can lead to costly between-species aggression. Previous research on rubyspot damselflies (Hetaerina spp.) demonstrated that sympatric shifts in male wing colour patterns and competitor recognition reduce interspecific aggression, supporting the hypothesis that agonistic character displacement (ACD) drove trait shifts. However, a recent theoretical model shows that RCD overshadows ACD if the same male trait is used for both female mate recognition and male competitor recognition. To determine whether female mate recognition is based on male wing coloration in Hetaerina, we conducted a phenotype manipulation experiment. Compared to control males, male H. americana with wings manipulated to resemble a sympatric congener (H. titia) suffered no reduction in mating success. Thus, female mate recognition is not based on species differences in male wing coloration. Experimental males did, however, experience higher interspecific fighting rates and reduced survival compared to controls. These results greatly strengthen the case for ACD and highlight the mechanistic distinction between ACD and RCD.