Unknown

Dataset Information

0

Crack reduction in laser powder bed fusion of MnAl(C) using graphene oxide coated powders.


ABSTRACT: MnAl(C) is a promising candidate as a rare earth free magnet. When processing MnAl(C) in laser powder bed fusion (L-PBF) the high cooling rates can retain the high temperature ε-phase which can then be annealed at low temperatures to yield the ferromagnetic τ-phase. However, MnAl(C) has been shown to be difficult to print using L-PBF and the material is prone to severe cracking. In this study, we have investigated how the addition of a graphene oxide (GO) coating on the powders can affect the processability of MnAl(C) and properties of the printed parts. MnAl(C) powders were coated with 0.2 wt.% GO using a wet-chemical process. The addition of GO reduced crack formation in the printed parts, and also influenced the degree of [Formula: see text] texture along the build direction. After printing, densities of 93% and 87% could be achieved for the reference and 0.2 wt.% GO, respectively. Furthermore, a 35% reduction of cracking was calculated from image analysis, comparing printed samples produced from coated and non-coated powders. Both powders formed mostly the ε-phase but some two-phase regions with a mix of γ- and ε-phase could be observed in the as-printed parts, but seemed to be more prominent in the uncoated reference samples and could also be linked to cracks. The τ-phase together with smaller amounts of secondary phases was obtained after heat treatment at 560 °C for 5 min for both samples. Vibrating sample magnetometry was used to measure the magnetic properties, the reference had a remanence of 33 Am2/kg and a coercivity of 139 kA/m, and the 0.2 wt.% GO sample showed a similar remanence of 30 Am2/kg and coercivity of 130 kA/m. These results show that GO coating is a viable method to reduce detrimental cracking in L-PBF MnAl without reducing the magnetic performance of the material.

SUBMITTER: Tiden S 

PROVIDER: S-EPMC10784453 | biostudies-literature | 2024 Jan

REPOSITORIES: biostudies-literature

altmetric image

Publications

Crack reduction in laser powder bed fusion of MnAl(C) using graphene oxide coated powders.

Tidén Simon S   Abenayake Himesha H   Löfstrand Julia J   Jansson Ulf U   Sahlberg Martin M  

Scientific reports 20240111 1


MnAl(C) is a promising candidate as a rare earth free magnet. When processing MnAl(C) in laser powder bed fusion (L-PBF) the high cooling rates can retain the high temperature ε-phase which can then be annealed at low temperatures to yield the ferromagnetic τ-phase. However, MnAl(C) has been shown to be difficult to print using L-PBF and the material is prone to severe cracking. In this study, we have investigated how the addition of a graphene oxide (GO) coating on the powders can affect the pr  ...[more]

Similar Datasets

| S-EPMC7475881 | biostudies-literature
| S-EPMC7958861 | biostudies-literature
| S-EPMC6491446 | biostudies-literature
| S-EPMC11012340 | biostudies-literature
| S-EPMC6954014 | biostudies-literature
| S-EPMC8269462 | biostudies-literature
| S-EPMC7004990 | biostudies-literature
| S-EPMC9135709 | biostudies-literature
| S-EPMC9369689 | biostudies-literature
| S-EPMC8198083 | biostudies-literature