Project description:PurposeThe aim of the present study was to identify key microRNAs (miRNAs) in porcine follicular fluid (FF) that regulate oocyte growth.MethodsmiRNAs contained in FF were determined by small RNA-seq of exosome RNA. Upstream regulator miRNA was determined by ingenuity pathway analysis using differentially expressed genes in granulosa cells (GCs) between small follicles (1-2 mm in diameter) and large follicles (3-5 mm), and between follicles containing oocytes of high developmental ability and follicles containing oocytes of low developmental ability. The candidate miRNAs overlapping among the three miRNAs group were determined. Lastly, the effect of supplementation with FF, exosome-depleted FFs, or each miRNA on in vitro oocyte growth was examined.ResultsThe miRNAs determined were miR-17, -27, -92a, and -145. These miRNAs were found in the spent culture medium of oocytes and granulosa cells complexes and serum by small RNA sequencing. Culturing of oocytes and granulosa cells complexes collected from porcine early antral follicles (0.5-0.7 mm in diameter) with FF for 14 days improved oocyte growth; depletion of exosomes from the FFs neutralized the beneficial effect observed. miR-92a mimic increased the antrum formation and diameter, together with acetylated levels of H4K12 in oocytes. In addition, supplementation of miRNA mimics miR-17b, -92a, and -145b improved the rate of chromatin configuration, and miR-17b and -92a mimics improved the developmental ability of oocytes to the blastocyst stage.ConclusionmiR-17, -92a, and -145 are major miRNA candidates in follicular fluids regulating oocyte growth.
Project description:The objective of this study was to identify miRNA expression profiles of extracellular vesicles (EVs) from porcine follicular fluids (FFs) in association with oocyte quality. Antral follicles were aspirated individually and oocytes were stained with 0.5% Lissamine Green B stain (LB), a vital stain for oocyte quality. Each oocyte was classified separately according to the stain into high-quality (unstained; HQ) and low-quality (stained; LQ). Oocyte corresponding FFs were pooled together into HQ and LQ groups and their EV-miRNAs were isolated and sequenced. Sequencing analysis revealed that a total of 295 known miRNAs were commonly detected in both groups. MiR-27b-3p, miR-140-3p, miR-29a-3p, miR-202-5p, and miR-16 were the top highly abundant miRNAs in both groups. Differentially expression (DE) analysis exhibited that 19 miRNAs (including miR-193a-5p, miR-125b, and miR-320) were up- while 22 (including miR-9, miR-6516, and miR-206) were down-regulated in the HQ compared to the LQ group.
Project description:BackgroundOvarian follicular fluids (FFs) contain several kinds of regulatory factors that maintain a suitable microenvironment for oocyte development. Extracellular vesicles (EVs) are among the factors that play essential roles in regulating follicle and oocyte development through their cargo molecules that include microRNAs (miRNAs). This study aimed to investigate small-EV (s-EV) miRNAs in porcine FFs and their potential association with oocyte quality.MethodsIndividual aspirated oocytes were stained with lissamine green B stain (LB), a vital stain for oocyte quality, and each oocyte was classified as high-quality (unstained; HQ) or low-quality (stained; LQ). FFs corresponding to oocytes were pooled together into HQ and LQ groups. Small-EVs were isolated from FFs, characterized, and their miRNA cargo was identified using the Illumina NovaSeq sequencing platform. Additionally, s-EVs from the HQ and LQ groups were utilized to investigate their effect on oocyte development after co-incubation during in vitro maturation.ResultsA total of 19 miRNAs (including miR-125b, miR-193a-5p, and miR-320) were significantly upregulated, while 23 (including miR-9, miR-206, and miR-6516) were downregulated in the HQ compared to the LQ group. Apoptosis, p53 signaling, and cAMP signaling were among the top pathways targeted by the elevated miRNAs in the HQ group while oocyte meiosis, gap junction, and TGF-beta signaling were among the top pathways targeted by the elevated miRNAs in the LQ group. The supplementation of small-EVs during maturation does not affect the oocyte developmental rates. However, LQ s-EVs increase the proportion of oocytes with homogeneous mitochondrial distribution and decrease the proportion of heterogeneous distribution.ConclusionOur findings indicated that FF-EVs contain different miRNA cargos associated with oocyte quality and could affect the mitochondrial distribution patterns during oocyte maturation.
Project description:PurposeThe purpose of this study is to determine the profile of extracellular microRNAs (exmiRNAs) in follicular fluid (FF) and explore their association with fertilization potential and embryo quality.MethodsWe collected FF from single follicles containing mature oocytes from 40 women undergoing IVF and we screened for the expression of 754 exmiRNAs in FF using the TaqMan OpenArray® qPCR platform. To determine the association of exmiRNAs and IVF outcomes, we compared their expression levels in FF samples that differ by fertilization status (normally, abnormally, and failed to fertilize) and embryo quality (top vs. non-top).ResultsWe detected 207 exmiRNAs, of which miR-30d-5p, miR-320b, miR-10b-3p, miR-1291, and miR-720 were most prevalent. We identified four exmiRNAs with significant fold change (FC) when FF that contained normally fertilized was compared to failed to fertilize oocytes [miR-202-5p (FC = 1.82, p = 0.01), miR-206 (FC = 2.09, p = 0.04), miR-16-1-3p (FC = 1.88, p = 0.05), and miR-1244 (FC = 2.72, p = 0.05)]. We also found four exmiRNAs to be significantly differentially expressed in FF that yielded top quality versus non-top quality embryos [(miR-766-3p (FC = 1.95, p = 0.01), miR-663b (FC = 0.18, p = 0.02), miR-132-3p (FC = 2.45, p = 0.05), and miR-16-5p (FC = 3.80, p = 0.05)]. In-silico analysis revealed that several of these exmiRNAs are involved in pathways implicated in reproductive system diseases, organismal abnormalities, and organ development.ConclusionsOur findings suggest that exmiRNAs in the follicular fluid can lead to downstream events that will affect fertilization and day 3 embryo morphology. We encourage further observational and experimental studies to confirm our findings and to determine the role of exmiRNAs in human reproduction.
Project description:Metabolic demands of modern hybrid sows have increased over the years, which increases the chance that sows enter a substantial negative energy balance (NEB) during lactation. This NEB can influence the development of follicles and oocytes that will give rise to the next litter. To study effects of a lactational NEB on follicular development, we used 36 primiparous sows of which 18 were subjected to feed restriction (3.25 kg/day) and 18 were full-fed (6.5 kg/day) during the last 2 weeks of a 24.1 ± 0.3 day lactation. Feed restriction resulted in a 70% larger lactational body weight loss and 76% higher longissimus dorsi depth loss, but similar amounts of backfat loss compared to the full fed sows. These changes were accompanied by lower plasma insulin-like growth factor 1 (IGF1) and higher plasma creatinine levels in the restricted sows from the last week of lactation onward. Ovaries were collected 48 h after weaning. Restricted sows had a lower average size of the 15 largest follicles (-26%) and cumulus-oocyte complexes showed less expansion after 22 h in vitro maturation (-26%). Less zygotes of restricted sows reached the metaphase stage 24 h after in vitro fertilization and showed a higher incidence of polyspermy (+89%). This shows that feed restriction had severe consequences on oocyte developmental competence. Follicular fluid of restricted sows had lower IGF1 (-56%) and steroid levels (e.g., β-estradiol, progestins, and androgens), which indicated that follicles of restricted sows were less competent to produce steroids and growth factors needed for oocytes to obtain full developmental competence.
Project description:The anti-Müllerian hormone (AMH) produced by the granulosa cells of growing follicles is critical for folliculogenesis and is clinically used as a diagnostic and prognostic marker of female fertility. Previous studies report that AMH-pretreatment in mice creates a pool of quiescent follicles that are released following superovulation, resulting in an increased number of ovulated oocytes. However, the quality and developmental competency of oocytes derived from AMH-induced accumulated follicles as well as the effect of AMH treatment on live birth are not known. This study reports that AMH priming positively affects oocyte maturation and early embryonic development culminating in higher number of live births. Our results show that AMH treatment results in good-quality oocytes with greater developmental competence that enhances embryonic development resulting in blastocysts with higher gene expression. The transcriptomic analysis of oocytes from AMH-primed mice compared with those of control mice reveal that AMH upregulates a large number of genes and pathways associated with oocyte quality and embryonic development. Mitochondrial function is the most affected pathway by AMH priming, which is supported by more abundant active mitochondria, mitochondrial DNA content and adenosine triphosphate levels in oocytes and embryos isolated from AMH-primed animals compared with control animals. These studies for the first time provide an insight into the overall impact of AMH on female fertility and highlight the critical knowledge necessary to develop AMH as a therapeutic option to improve female fertility.
Project description:This study aimed to investigate the role of mitochondrial-related protein Mfn2 in polycystic ovary syndrome (PCOS) and its impact on oocyte development. The pathological features of PCOS model mice were confirmed by hematoxylin-eosin staining and immunohistochemistry. The expression of Mfn2 and mitochondrial-related proteins in PCOS oocytes and granulosa cells was detected by qRT-PCR and Western blot. Mitochondrial quantity was measured by Mito-Tracker staining, and the structure of mitochondria-associated ER membranes (MAMs) was observed by transmission electron microscopy. The results showed that Mfn2 was significantly downregulated in PCOS oocytes and granulosa cells, and its expression was inhibited in oocytes at different developmental stages. Moreover, the structure of MAMs was also disrupted. Downregulation of Mfn2 expression led to a reduction in mitochondrial quantity in oocytes and granulosa cells, as well as disruption of MAM structure, while overexpression of Mfn2 had the opposite effect. In conclusion, this study indicates that Mfn2 affects the development of PCOS oocytes by regulating MAMs and may be involved in maintaining the stability of MAM structure and function, thereby affecting mitochondrial quantity and function. These findings provide new insights into the pathogenesis and treatment of PCOS.
Project description:The factors and processes involved in primate follicular development are complex and not fully understood. An encapsulated three-dimensional (3D) follicle culture system could be a valuable in vitro model to study the dynamics and regulation of folliculogenesis in intact individual follicles in primates. Besides the research relevance, in vitro follicle maturation (IFM) is emerging as a promising approach to offer options for fertility preservation in female patients with cancer. This review summarizes the current published data on in vitro follicular development from the preantral to small antral stage in nonhuman primates, including follicle survival and growth, endocrine (ovarian steroid hormone) and paracrine/autocrine (local factor) function, as well as oocyte maturation and fertilization. Future directions include major challenges and strategies to further improve follicular growth and differentiation with oocytes competent for in vitro fertilization and subsequent embryonic development, as well as opportunities to investigate primate folliculogenesis by utilizing this 3D culture system. The information may be valuable in identifying optimal conditions for human follicle culture, with the ultimate goal of translating the experimental results and products to patients, thereby facilitating diagnostic and therapeutic approaches for female fertility.
Project description:Upstream stimulating factor 1 (USF1) is a basic helix-loop-helix transcription factor that specifically binds to E-box DNA motifs, known cis-elements of key oocyte expressed genes essential for oocyte and early embryonic development. However, the functional and regulatory role of USF1 in bovine oocyte and embryo development is not understood. In this study, we demonstrated that USF1 mRNA is maternal in origin and expressed in a stage specific manner during the course of oocyte maturation and preimplantation embryonic development. Immunocytochemical analysis showed detectable USF1 protein during oocyte maturation and early embryonic development with increased abundance at 8-16-cell stage of embryo development, suggesting a potential role in embryonic genome activation. Knockdown of USF1 in germinal vesicle stage oocytes did not affect meiotic maturation or cumulus expansion, but caused significant changes in mRNA abundance for genes associated with oocyte developmental competence. Furthermore, siRNA-mediated depletion of USF1 in presumptive zygote stage embryos demonstrated that USF1 is required for early embryonic development to the blastocyst stage. A similar (USF2) yet unique (TWIST2) expression pattern during oocyte and early embryonic development for related E-box binding transcription factors known to cooperatively bind USF1 implies a potential link to USF1 action. This study demonstrates that USF1 is a maternally derived transcription factor required for bovine early embryonic development, which also functions in regulation of JY1, GDF9, and FST genes associated with oocyte competence.
Project description:Recent changes in legal status and public perception of cannabis have contributed to an increase use amongst women of reproductive age. Concurrently, there is inadequate evidence-based knowledge to guide clinical practice regarding cannabis and its effects on fertility and early embryonic development. This study aimed to evaluate the effects of the primary psychoactive component of cannabis, delta-9 tetrahydrocannabinol (THC), during oocyte maturation, and its impact on the developing embryo. Bovine oocytes were matured in vitro for 24 h under clinically relevant doses of THC mimicking plasma levels achieved after therapeutic (0.032 μM) and recreational (0.32 and 3.2 μM) cannabis use. THC-treated oocytes were assessed for development and quality parameters at both the oocyte and embryo level. Characteristics of oocytes treated with cannabinoid receptor antagonists were also assessed. Oocytes treated with 0.32 and 3.2 μM THC, were significantly less likely to reach metaphase II (p < 0.01) and consequently had lower cleavage rates at day 2 post-fertilization (p < 0.0001). Treatment with cannabinoid receptor antagonists restored this effect (p < 0.05). Oocytes that did reach MII showed no differences in spindle morphology. Oocytes treated with 0.032 μM THC had significantly lower connexin mRNA (p < 0.05) (correlated with decreased quality), but this was not confirmed at the protein level. At the blastocyst stage there were no significant differences in developmental rates or the proportion of trophectoderm to inner cell mass cells between the control and treatment groups. These blastocysts, however, displayed an increased level of apoptosis in the 0.32 and 3.2 μM groups (p < 0.0001). Our findings suggest a possible disruptive effect of cannabis on oocyte maturation and early embryonic development.