Ontology highlight
ABSTRACT: Background
The genes involved in inner ear development and maintenance of the adult organ have yet to be fully characterized. Previous genetic analysis has emphasized the early development that gives rise to the otic vesicle. This study aimed to bridge the knowledge gap and identify candidate genes that are expressed as the auditory and vestibular sensory organs continue to grow and develop until the systems reach postmetamorphic maturity.Methods
Affymetrix microarrays were used to assess inner ear transcriptome profiles from three Xenopus laevis developmental ages where all eight endorgans comprise mechanosensory hair cells: larval stages 50 and 56, and the post-metamorphic juvenile. Pairwise comparisons were made between the three developmental stages and the resulting differentially expressed X. laevis Probe Set IDs (Xl-PSIDs) were assigned to four groups based on differential expression patterns. DAVID analysis was undertaken to impart functional annotation to the differentially regulated Xl-PSIDs.Results
Analysis identified 1510 candidate genes for differential gene expression in one or more pairwise comparison. Annotated genes not previously associated with inner ear development emerged from this analysis, as well as annotated genes with established inner ear function, such as oncomodulin, neurod1, and sp7. Notably, 36% of differentially expressed Xl-PSIDs were unannotated.Conclusions
Results draw attention to the complex gene regulatory patterns that characterize Xenopus inner ear development, and underscore the need for improved annotation of the X. laevis genome. Outcomes can be utilized to select candidate inner ear genes for functional analysis, and to promote Xenopus as a model organism for biomedical studies of hearing and balance.
SUBMITTER: Virk SM
PROVIDER: S-EPMC10802236 | biostudies-literature | 2024 Jan
REPOSITORIES: biostudies-literature
bioRxiv : the preprint server for biology 20240101
<h4>Background</h4>The genes involved in inner ear development and maintenance of the adult organ have yet to be fully characterized. Previous genetic analysis has emphasized the early development that gives rise to the otic vesicle. This study aimed to bridge the knowledge gap and identify candidate genes that are expressed as the auditory and vestibular sensory organs continue to grow and develop until the systems reach postmetamorphic maturity.<h4>Methods</h4><i>Affymetrix</i> microarrays wer ...[more]