Project description:BackgroundApproximately 30% of patients with schizophrenia experience auditory hallucinations that are refractory to antipsychotic medications. Here, we evaluated the feasibility and efficacy of transcranial alternating current stimulation (tACS) that we hypothesized would improve auditory hallucination symptoms by enhancing synchronization between the frontal and temporo-parietal areas of the left hemisphere.Method22 participants were randomized to one of three arms and received twice daily, 20 min sessions of sham, 10 Hz 2 mA peak-to-peak tACS, or 2 mA tDCS over the course of 5 consecutive days. Symptom improvement was assessed using the Auditory Hallucination Rating Scale (AHRS) as the primary outcome measure. The Positive and Negative Syndrome Scale (PANSS) and the Brief Assessment of Cognition in Schizophrenia (BACS) were secondary outcomes.ResultsPrimary and secondary behavioral outcomes were not significantly different between the three arms. However, effect size analyses show that tACS had the greatest effect based on the auditory hallucinations scale for the week of stimulation (1.31 for tACS; 1.06 and 0.17, for sham and tDCS, respectively). Effect size analysis for the secondary outcomes revealed heterogeneous results across measures and stimulation conditions.ConclusionsTo our knowledge, this is the first clinical trial of tACS for the treatment of symptoms of a psychiatric condition. Further studies with larger sample sizes are needed to better understand the effect of tACS on auditory hallucinations.
Project description:BackgroundChronic pain is common, disruptive, and often treatment-resistant. Hence, researchers and clinicians seek alternative therapies for chronic pain. Transcranial alternating current stimulation (tACS) is an emerging neuromodulation technique that non-invasively modulates neural oscillations in the human brain. tACS induces pain relief by allowing the neural network to restore adequate synchronization. We reviewed studies on the effectiveness of tACS in controlling chronic pain.MethodsThe PubMed, SCOPUS, Embase, and Cochrane Library databases were systematically searched for relevant studies published until December 6, 2023. The key search phrase for identifying potentially relevant articles was [(Transcranial Alternating Current Stimulation OR tACS) AND pain]. The following inclusion criteria were applied for article selection: (1) studies involving patients with chronic pain; (2) tACS was applied for controlling pain; and (3) follow-up evaluations were performed to assess the degree of pain reduction after the application of tACS.ResultsWe identified 2,330 potentially relevant articles. After reading the titles and abstracts and assessing eligibility based on the full-text articles, we included four articles in our review. Among the included studies, tACS was used for fibromyalgia in one study, low back pain (LBP) in two studies, and migraine in one study. In the study on fibromyalgia, it did not show a better pain-reducing effect of tACS compared with sham stimulation. Two studies on LBP showed conflicting results. In migraine, tACS showed a positive pain-reducing effect 24-48 h after its application.ConclusionThere is insufficient research to draw a conclusive judgment on the effectiveness of tACS in controlling chronic pain. More studies across various chronic pain-related diseases are required for a definitive conclusion.
Project description:Transcranial alternating current stimulation (tACS) modulates endogenous neural oscillations in healthy human participants by the application of a low-amplitude electrical current with a periodic stimulation waveform. Yet, it is unclear if tACS can modulate and restore neural oscillations that are reduced in patients with psychiatric illnesses such as schizophrenia. Here, we asked if tACS modulates network oscillations in schizophrenia. We performed a randomized, double-blind, sham-controlled clinical trial to contrast tACS with transcranial direct current stimulation (tDCS) and sham stimulation in 22 schizophrenia patients with auditory hallucinations. We used high-density electroencephalography to investigate if a five-day, twice-daily 10Hz-tACS protocol enhances alpha oscillations and modulates network dynamics that are reduced in schizophrenia. We found that 10Hz-tACS enhanced alpha oscillations and modulated functional connectivity in the alpha frequency band. In addition, 10Hz-tACS enhanced the 40Hz auditory steady-state response (ASSR), which is reduced in patients with schizophrenia. Importantly, clinical improvement of auditory hallucinations correlated with enhancement of alpha oscillations and the 40Hz-ASSR. Together, our findings suggest that tACS has potential as a network-level approach to modulate reduced neural oscillations related to clinical symptoms in patients with schizophrenia.
Project description:BackgroundTranscranial alternating current stimulation (tACS) alters cortical excitability with low-intensity alternating current and thereby modulates aberrant brain oscillations. Despite the recent increase in studies investigating the feasibility and efficacy of tACS in treating neuropsychiatric disorders, its mechanisms, as well as optimal stimulation parameters, are not fully understood.ObjectivesThis systematic review aimed to compile human research on tACS for neuropsychiatric disorders to delineate typical treatment parameters for these conditions and evaluate its outcomes.MethodsA search for published studies and unpublished registered clinical trials was conducted through OVID (MEDLINE, PsycINFO, and Embase), ClinicalTrials.gov, and the International Clinical Trials Registry Platform. Studies utilizing tACS to treat neuropsychiatric disorders in a clinical trial setting were included.ResultsIn total, 783 published studies and 373 clinical trials were screened; 53 published studies and 70 clinical trials were included. Published studies demonstrated a low risk of bias, as assessed by the Joanna Briggs Institute Critical Appraisal Tools. Neurocognitive, psychotic, and depressive disorders were the most common disorders treated with tACS. Both published studies (58.5%) and registered clinical trials (52%) most commonly utilized gamma frequency bands and tACS was typically administered at an intensity of 2 mA peak-to-peak, once daily for 20 or fewer sessions. Although the targeted brain locations and tACS montages varied across studies based on the outcome measures and specific pathophysiology of the disorders, the dorsolateral prefrontal cortex (DLPFC) was the most common target in both published studies (30.2%) and registered clinical trials (25.6%). Across studies that published results on tACS outcome measures, tACS resulted in enhanced symptoms and/or improvements in overall psychopathology for neurocognitive (all 11 studies), psychotic (11 out of 14 studies), and depressive (7 out of 8 studies) disorders. Additionally, 17 studies reported alterations in the power spectrum of the electroencephalogram around the entrained frequency band at the targeted locations following tACS.ConclusionBehavioral and cognitive symptoms have been positively impacted by tACS. The most consistent changes were reported in cognitive symptoms following gamma-tACS over the DLPFC. However, the paucity of neuroimaging studies for each neuropsychiatric condition highlights the necessity for replication studies employing biomarker- and mechanism-centric approaches.
Project description:Gamma oscillations are essential for brain communication. The 40 Hz neural oscillation deficits in schizophrenia impair left frontotemporal connectivity and information communication, causing auditory hallucinations. Transcranial alternating current stimulation is thought to enhance connectivity between different brain regions by modulating brain oscillations. In this work, we applied a frontal-temporal-parietal 40 Hz-tACS stimulation strategy for treating auditory hallucinations and further explored the effect of tACS on functional connectivity of brain networks. 32 schizophrenia patients with refractory auditory hallucinations received 20daily 20-min, 40 Hz, 1 mA sessions of active or sham tACS on weekdays for 4 consecutive weeks, followed by a 2-week follow-up period without stimulation. Auditory hallucination symptom scores and 64-channel electroencephalograms were measured at baseline, week2, week4 and follow-up. For clinical symptom score, we observed a significant interaction between group and time for auditory hallucinations symptoms (F(3,90) = 26.964, p < 0.001), and subsequent analysis showed that the 40Hz-tACS group had a higher symptom reduction rate than the sham group at week4 (p = 0.036) and follow-up (p = 0.047). Multiple comparisons of corrected EEG results showed that the 40Hz-tACS group had higher functional connectivity in the right frontal to parietal (F (1,30) = 7.24, p = 0.012) and right frontal to occipital (F (1,30) = 7.98, p = 0.008) than the sham group at week4. Further, functional brain network controllability outcomes showed that the 40Hz-tACS group had increased average controllability (F (1,30) = 6.26, p = 0.018) and decreased modality controllability (F (1,30) = 6.50, p = 0.016) in the right frontal lobe compared to the sham group. Our polit study indicates that 40Hz-tACS combined with medicine may be an effective treatment for targeting symptoms specific to auditory hallucinations and altering functional connectivity and controllability at the network level.
Project description:Temporal interference transcranial alternating current stimulation (TI-tACS) is a new technique of noninvasive brain stimulation. Previous studies have shown the effectiveness of TI-tACS in stimulating brain areas in a selective manner. However, its safety in modulating human brain neurons is still untested. In this study, 38 healthy adults were recruited to undergo a series of neurological and neuropsychological measurements regarding safety concerns before and after active (2 mA, 20/70 Hz, 30 min) or sham (0 mA, 0 Hz, 30 min) TI-tACS. The neurological and neuropsychological measurements included electroencephalography (EEG), serum neuron-specific enolase (NSE), the Montreal Cognitive Assessment (MoCA), the Purdue Pegboard Test (PPT), an abbreviated version of the California Computerized Assessment Package (A-CalCAP), a revised version of the Visual Analog Mood Scale (VAMS-R), a self-assessment scale (SAS), and a questionnaire about adverse effects (AEs). We found no significant difference between the measurements of the active and sham TI-tACS groups. Meanwhile, no serious or intolerable adverse effects were reported or observed in the active stimulation group of 19 participants. These results support that TI-tACS is safe and tolerable in terms of neurological and neuropsychological functions and adverse effects for use in human brain stimulation studies under typical transcranial electric stimulation (TES) conditions (2 mA, 20/70 Hz, 30 min).
Project description:BackgroundThe mechanistic effects of gamma transcranial alternating current stimulation (tACS) on hippocampal gamma oscillation activity in Alzheimer's Disease (AD) remains unclear. This study aimed to clarify beneficial effects of gamma tACS on cognitive functioning in AD and to elucidate effects on hippocampal gamma oscillation activity.MethodsThis is a double-blind, randomized controlled single-center trial. Participants with mild AD were randomized to tACS group or sham group, and underwent 30 one-hour sessions of either 40 Hz tACS or sham stimulation over consecutive 15 days. Cognitive functioning, structural magnetic resonance imaging (MRI), and simultaneous electroencephalography-functional MRI (EEG-fMRI) were evaluated at baseline, the end of the intervention and at 3-month follow-up from the randomization.ResultsA total of 46 patients were enrolled (23 in the tACS group, 23 in the sham group). There were no group differences in the change of the primary outcome, 11-item cognitive subscale of the Alzheimer's Disease Assessment Scale (ADAS-Cog) score after intervention (group*time, p = 0.449). For secondary outcomes, compared to the control group, the intervention group showed significant improvement in MMSE (group*time, p = 0.041) and MoCA scores (non-parametric test, p = 0.025), which were not sustained at 3-month follow-up. We found an enhancement of theta-gamma coupling in the hippocampus, which was positively correlated with improvements of MMSE score and delayed recall. Additionally, fMRI revealed increase of the local neural activity in the hippocampus.ConclusionEffects on the enhancement of theta-gamma coupling and neural activity within the hippocampus suggest mechanistic models for potential therapeutic mechanisms of tACS.Trial registrationClinicalTrials.gov, NCT03920826; Registration Date: 2019-04-19.
Project description:BACKGROUND:Transcranial alternating current stimulation (tACS) offers a new approach for adult patients with major depressive disorder (MDD). The study is to evaluate the efficacy and safety of tACS treating MDD. METHODS:This is an 8-week, double-blind, randomized, placebo-controlled study. Ninety-two drug-naive patients with MDD aged 18 to 65 years will receive 20 daily 40-min, 77.5-Hz, 15-mA sessions of active or sham tACS targeting the forehead and both mastoid areas on weekdays for 4 consecutive weeks (week 4), following a 4-week observation period (week 8). The primary outcome is the remission rate defined as the 17-item Hamilton depression rating scale (HDRS-17) score ≤7 at week 8. Secondary outcomes are the rates of response at weeks 4 and 8 and rate of remission at week 4 based on HDRS-17, the proportion of participants having improvement in the clinical global impression-improvement, the change in HDRS-17 score (range, 0-52, with higher scores indicating more depression) over the study, and variations of brain imaging and neurocognition from baseline to week 4. Safety will be assessed by vital signs at weeks 4 and 8, and adverse events will be collected during the entire study. DISCUSSION:The tACS applied in this trial may have treatment effects on MDD with minimal side effects. TRIAL REGISTRATION:Chinese Clinical Trial Registry, ChiCTR1800016479; http://www.chictr.org.cn/showproj.aspx?proj=22048.
Project description:BackgroundTranscranial alternating current stimulation (tACS) can apply currents of varying intensity to the scalp, modulating cortical excitability and brain activity. tACS is a relatively new neuromodulation intervention that is now widely used in clinical practice. Many papers related to tACS have been published in various journals. However, there are no articles that objectively and directly introduce the development trend and research hotspots of tACS. Therefore, the aim of this study is to use CiteSpace to visually analyze the recent tACS-related publications, systematically and in detail summarize the current research hotspots and trends in this field, and provide valuable information for future tACS-related research.Material and methodsThe database Web of Science Core Collection Science Citation Index Expanded was used and searched from build to 4 August 2023. Using the CiteSpace to analyze the authors, institutions, countries, keywords, co-cited authors, journals, and references.ResultsA total of 677 papers were obtained. From 2008 to 2023, the number of publications shows an increasing trend, albeit with some fluctuations. The most productive country in this field was Germany. The institution with the highest number of publications is Carl von Ossietzky University of Oldenburg (n = 50). According to Bradford's law, 7 journals are considered core journals in the field. Herrmann, CS was the author with the most publications (n = 40), while Antal, A was the author with the highest number of co-citations (n = 391) and betweenness centrality (n = 0.16). Disease, neural mechanisms of the brain and electric stimulation are the major research areas in the field. The effect of tACS in different diseases, multi-site stimulation, combined treatment and evaluation are the future research hotspots and trends.ConclusiontACS has research value and research potential, and more and more researchers are paying attention to it. The findings of this bibliometric study provide the current status and trends in the clinical research of tACS and may help researchers to identify hotspots s and explore new research directions in this field.
Project description:BackgroundTranscranial direct current stimulation (tDCS) is a promising method for migraine treatment. In this study, we investigated the efficacy and safety of tDCS for migraine by conducting a systematic review and meta-analysis of randomized controlled trials (RCTs).MethodsWe searched PubMed, EMBASE, Cochrane Library, and Web of Science up to December 02, 2021 for RCTs reporting tDCS for migraine treatment. Two authors independently evaluated the eligibility of the retrieved trials and extracted relevant data. Outcomes for the quantitative synthesis were reduction in migraine days per month and adverse events.ResultsEleven RCTs that included 425 patients with migraine were evaluated in the meta-analysis. The efficacy and safety of anodal or cathodal stimulation targeting different brain areas, including primary motor cortex (M1), primary sensory cortex (S1), dorsolateral prefrontal cortex (DLPFC), and visual cortex (VC), were assessed in the RCTs enrolled. We found that tDCS with M1 and VC activation could reduce No. of migraine days per month in patients with migraine. Meanwhile, tDCS with VC inhibition could also reduce No. of migraine days per month in patients with migraine. However, there were no differences in the incidence of adverse events between the two groups.ConclusiontDCS activates M1 or activates/inhibits VC which could improve migraine symptoms. tDCS is an effective, preventive, and safe treatment for migraine.