Project description:In the extreme alpine climate of the Qinghai-Tibet Plateau (QTP), plant growth and reproduction are limited by extremely cold temperatures, low soil moisture, and scarce nutrient availability. The root-associated microbiome indirectly promotes plant growth and plays a role in the fitness of plants on the QTP, particularly in Tibetan medicinal plants. Despite the importance of the root-associated microbiome, little is known about the root zone. This study used high-throughput sequencing to investigate two medicinal Meconopsis plants, M. horridula and M. integrifolia, to determine whether habitat or plant identity had a more significant impact on the microbial composition of the roots. The fungal sequences were obtained using ITS-1 and ITS-2, and bacterial sequences were obtained using 16S rRNA. Different microbial patterns were observed in the microbial compositions of fungi and bacteria in the root zones of two Meconopsis plants. In contrast to bacteria, which were not significantly impacted by plant identity or habitat, the fungi in the root zone were significantly impacted by plant identity, but not habitat. In addition, the synergistic effect was more significant than the antagonistic effect in the correlation between fungi and bacteria in the root zone soil. The fungal structure was influenced by total nitrogen and pH, whereas the structure of bacterial communities was influenced by soil moisture and organic matter. Plant identity had a greater influence on fungal structure than habitat in two Meconopsis plants. The dissimilarity of fungal communities suggests that more attention should be paid to fungi-plant interactions.
Project description:Meconopsis Viguier (Papaveraceae) is an iconic genus of alpine forbs that includes medicinal and ornamental species. This study extends previous phylogenetic analyses of Meconopsis, using ITS sequences representing all the major Meconopsis clades. Phenotypic traits are also analysed for all described species. Our results show that Meconopsis evolved as a ≥ octaploid clade, with considerable interior structure reflecting further changes in ploidy levels as well as phenotypic differentiation. We support the exclusion of a few species as Cathcartia or Papaver, making Meconopsis a Tibetan region clade. Based on average rates of nucleotide substitution in angiosperm herbs we estimate that the Meconopsis clade diverged from the Meconella clade of Papaver approximately 16.6 Ma. This is soon after the 'hard' collision of the Indian continent with Asia caused uplift of the Himalaya and Hengduan ranges, greatly extended the Tibetan plateau, and initiated monsoonal climates. Eight major clades within Meconopsis are well supported and these correspond closely to previously recognised subgenus groups. However, the relationship among the clades is poorly resolved, probably because they diverged rapidly ∼15-11 Ma. Two of these clades are ∼dodecaploid but appear to have originated independently. The eight clades have distinct distributions, variously associated with the Himalaya, the eastern Plateau and Hengduan ranges. Some Meconopsis species were not monophyletic, suggesting that a combination of multilocus molecular and phenotypic traits is required when defining and revising species.
Project description:The Tibetan Plateau's distinctive high-altitude environment, marked by extreme cold and reduced oxygen levels, presents considerable survival challenges for both humans and mammals. Natural selection has led to the accumulation of adaptive mutations in Tibetan pigs, enabling them to develop distinctive adaptive phenotypes. Here, we aim to uncover the genetic mechanisms underlying the adaptation of Tibetan pigs to high-altitude hypoxia. Therefore, we conducted a systematic analysis of 140 whole-genome sequencing (WGS) data points from different representing pig populations. Our analysis identified a total of 27,614,561 mutations, including 22,386,319 single-nucleotide variants (SNVs) and 5,228,242 insertions/deletions (INDELs, size < 50 bp). A total of 11% (2,678,569) of the SNVs were newly identified in our project, significantly expanding the dataset of genetic variants in Tibetan pigs. Compared to other pig breeds, Tibetan pigs are uniquely adapted to high-altitude environments, exhibiting the highest genetic diversity and the lowest inbreeding coefficient. Employing the composite of multiple signals (CMS) method, we scanned the genome-wide Darwinian positive selection signals and identified 32,499 Tibetan pig positively selected SNVs (TBPSSs) and 129 selected genes (TBPSGs), including 213 newly discovered genes. Notably, we identified eight genes (PHACTR1, SFI1, EPM2A, SLC30A7, NKAIN2, TNNI3K, and PLIN2) with strong nature selection signals. They are likely to improve cardiorespiratory function and fat metabolism to help Tibetan pigs become adapted to the high-altitude environment. These findings provide new insights into the genetic mechanisms of high-altitude adaptation and the adaptive phenotypes of Tibetan pigs.
Project description:When different species experience similar selection pressures, the probability of evolving similar adaptive solutions may be influenced by legacies of evolutionary history, such as lineage-specific changes in genetic background. Here we test for adaptive convergence in hemoglobin (Hb) function among high-altitude passerine birds that are native to the Qinghai-Tibet Plateau, and we examine whether convergent increases in Hb-O2 affinity have a similar molecular basis in different species. We documented that high-altitude parid and aegithalid species from the Qinghai-Tibet Plateau have evolved derived increases in Hb-O2 affinity in comparison with their closest lowland relatives in East Asia. However, convergent increases in Hb-O2 affinity and convergence in underlying functional mechanisms were seldom attributable to the same amino acid substitutions in different species. Using ancestral protein resurrection and site-directed mutagenesis, we experimentally confirmed two cases in which parallel substitutions contributed to convergent increases in Hb-O2 affinity in codistributed high-altitude species. In one case involving the ground tit (Parus humilis) and gray-crested tit (Lophophanes dichrous), parallel amino acid replacements with affinity-enhancing effects were attributable to nonsynonymous substitutions at a CpG dinucleotide, suggesting a possible role for mutation bias in promoting recurrent changes at the same site. Overall, most altitude-related changes in Hb function were caused by divergent amino acid substitutions, and a select few were caused by parallel substitutions that produced similar phenotypic effects on the divergent genetic backgrounds of different species.
Project description:The Cyclophyllidea comprises the most species-rich order of tapeworms (Platyhelminthes, Cestoda) and includes species with some of the most severe health impact on wildlife, livestock, and humans. We collected seven Cyclophyllidea specimens from rodents in Qinghai-Tibet Plateau (QTP) and its surrounding mountain systems, of which four specimens in QTP were unsequenced, representing "putative new species." Their complete mitochondrial (mt) genomes were sequenced and annotated. Phylogenetic reconstruction of partial 28S rDNA, cox1 and nad1 datasets provided high bootstrap frequency support for the categorization of three "putative new species," assigning each, respectively, to the genera Mesocestoides, Paranoplocephala, and Mosgovoyia, and revealing that some species and families in these three datasets, which contain 291 species from nine families, may require taxonomic revision. The partial 18S rDNA phylogeny of 29 species from Taeniidae provided high bootstrap frequency support for the categorization of the "putative new species" in the genus Hydatigera. Combined with the current investigation, the other three known Taeniidae species found in this study were Taenia caixuepengi, T. crassiceps, and Versteria mustelae and may be widely distributed in western China. Estimates of divergence time based on cox1 + nad1 fragment and mt protein-coding genes (PCGs) showed that the differentiation rate of Cyclophyllidea species was strongly associated with the rate of change in the biogeographic scenarios, likely caused by the uplift of the QTP; i.e., species differentiation of Cyclophyllidea might be driven by host-parasite co-evolution caused by the uplift of QTP. We propose an "out of QTP" hypothesis for the radiation of these cyclophyllidean tapeworms.
Project description:In the current study, we report the high-quality draft genome sequence of Neonectria sp. DH2, an endophytic fungus isolated from Meconopsis grandis Prain in Tibet. The whole genome is about 45.8 Mbp, with a GC content of 53%. A total of 14,163 genes are predicted to encode proteins, and 557 of them are considered as unique, as no matches are found in five gene databases. A neighbor-joining phylogenetic tree based on internal transcribed spacer (ITS) region sequences shows that Neonectria sp. DH2 was most closely related to Neonectria ramulariae. 47 biosynthetic gene clusters (BGC) were identified in Neonectria sp. DH2 genome, and only 5 BGCs shows significant similarities to previously reported BGCs. The presence of 42 unique BGCs in Neonectria sp. DH2 suggests that it has great potential to produce novel secondary metabolites.
Project description:Puma Yumco Lake (PYL) is an ultraoligotrophic freshwater lake that sits an altitude of 5030 m within the Qinghai-Tibet Plateau of China. The bacterial and archaeal diversity of the lake remains poorly understood, despite their potential to inform on biogeochemical cycling and environment-microbial associations in these unique environments. Here, the bacterial and archaeal communities of PYL were investigated using high-throughput sequencing analysis of community 16S rRNA gene sequences. Further, the relationships among dominant taxa and environmental factors were comprehensively evaluated. Bacterial diversity comprised 31 phyla and 371 genera (10,645 operational taxonomic units [OTUs], Shannon index values of 5.21-6.16) and was significantly higher than that of Archaea (five phyla and 24 genera comprising 1141 OTUs and Shannon index values of 1.18-3.28). The bacterial communities were dominated by Proteobacteria (48.42-59.97% relative abundances), followed by Bacteroidetes (12.5-32.51%), Acidobacteria (2.07-11.56%), Firmicutes (0.65-6.32%), Planctomycetes (0.99-3.56%), Gemmatimonadetes (0.38-3.57%), Actinobacteria (1.67-3.52%), Verrucomicrobia (0.87-2.01%), and Chloroflexi (0.5-1.17%). In addition, archaeal communities were dominated by Thaumarchaeota (33.22-93.00%), followed by Euryarchaeota (2.89-35.47%), Woesearchaeota (0.99-31.04%), and Pacearchaeota (0.01-1.14%). The most abundant bacterial genus was Rhodoferax (5.73-26.62%) and the most abundant archaeal genus was the ammonia-oxidizing Nitrososphaera (29.18-91.46%). These results suggest that the Rhodoferax and Nitrososphaera are likely to participate in biogeochemical cycles in these environments through photoheterotrophy and nitrification, respectively. Taken together, these results provide valuable data for better understanding microbial interactions with each other and with these unique environments.
Project description:BackgroundOrganisms living at high altitudes must overcome three major environmental challenges: hypoxia, cold, and intense UV radiation. The molecular mechanisms that enable these challenges to be overcome have mainly been studied in endothermic organisms; relatively little attention has been paid to poikilothermic species. Here, we present deep transcriptome sequencing in two closely related lizards, the high altitude-dwelling Phrynocephalus erythrurus and the lowland-dwelling P. putjatia, to identify candidate genes under positive selection and to explore the convergent evolutionary adaptation of poikilothermic animals to high altitude life.ResultsMore than 70 million sequence reads were generated for each species via Illumina sequencing. De novo assembly produced 56,845 and 63,140 transcripts for P. erythrurus and P. putjatia, respectively. P. erythrurus had higher Ka/Ks ratios than P. putjatia, implying an accelerated evolutionary rate in the high altitude lizard lineage. 206 gene ontology (GO) categories with accelerated evolutionary rates and 43 candidate positively selected genes were detected along the P. erythrurus lineage. Some of these GO categories have functions associated with responses to hypoxia, energy metabolism and responses to UV damage. We also found that the high-altitude ranid frog R. kukunoris had higher Ka/Ks ratios than the closely related low-altitude frog R. chensinensis, and that the functional categories with accelerated evolutionary rates in R. kukunoris overlapped extensively with those detected along the P. erythrurus lineage.ConclusionsThe mechanisms of high altitude adaptation in P. erythrurus were tentatively inferred. By comparing two pairs of low- and high-altitude poikilothermic species, we found that similar functional categories had undergone positive selection in high altitude-dwelling Phrynocephalus and Rana lineages, indicating that similar mechanisms of adaptation to high altitude might have evolved in both genera. Our findings provide important guidance for future functional studies on high altitude adaptation in poikilothermic animals.
Project description:It was acknowledged long ago that microorganisms have played critical roles in animal evolution. Tibetan wild asses (TWA, Equus kiang) are the only wild perissodactyls on the Qinghai-Tibet Plateau (QTP) and the first national protected animals; however, knowledge about the relationships between their gut microbiota and the host's adaptability remains poorly understood. Herein, 16S rRNA and meta-genomic sequencing approaches were employed to investigate the gut microbiota-host associations in TWA and were compared against those of the co-resident livestock of yak (Bos grunnies) and Tibetan sheep (Ovis aries). Results revealed that the gut microbiota of yak and Tibetan sheep underwent convergent evolution. By contrast, the intestinal microflora of TWA diverged in a direction enabling the host to subsist on sparse and low-quality forage. Meanwhile, high microbial diversity (Shannon and Chao1 indices), cellulolytic activity, and abundant indicator species such as Spirochaetes, Bacteroidetes, Prevotella_1, and Treponema_2 supported forage digestion and short-chain fatty acid production in the gut of TWA. Meanwhile, the enterotype identification analysis showed that TWA shifted their enterotype in response to low-quality forage for a better utilization of forage nitrogen and short-chain fatty acid production. Metagenomic analysis revealed that plant biomass degrading microbial consortia, genes, and enzymes like the cellulolytic strains (Prevotella ruminicola, Ruminococcus flavefaciens, Ruminococcus albus, Butyrivibrio fibrisolvens, and Ruminobacter amylophilus), as well as carbohydrate metabolism genes (GH43, GH3, GH31, GH5, and GH10) and enzymes (β-glucosidase, xylanase, and β-xylosidase, etc.) had a significantly higher enrichment in TWA. Our results indicate that gut microbiota can improve the adaptability of TWA through plant biomass degradation and energy maintenance by the functions of gut microbiota in the face of nutritional deficiencies and also provide a strong rationale for understanding the roles of gut microbiota in the adaptation of QTP wildlife when facing harsh feeding environments.