Unknown

Dataset Information

0

Hydrogel dressings with intrinsic antibiofilm and antioxidative dual functionalities accelerate infected diabetic wound healing.


ABSTRACT: Chronic wounds are often infected with biofilm bacteria and characterized by high oxidative stress. Current dressings that promote chronic wound healing either require additional processes such as photothermal irradiation or leave behind gross amounts of undesirable residues. We report a dual-functionality hydrogel dressing with intrinsic antibiofilm and antioxidative properties that are synergistic and low-leaching. The hydrogel is a crosslinked network with tethered antibacterial cationic polyimidazolium and antioxidative N-acetylcysteine. In a murine diabetic wound model, the hydrogel accelerates the closure of wounds infected with methicillin-resistant Staphylococcus aureus or carbapenem-resistant Pseudomonas aeruginosa biofilm. Furthermore, a three-dimensional ex vivo human skin equivalent model shows that N-acetylcysteine promotes the keratinocyte differentiation and accelerates the re-epithelialization process. Our hydrogel dressing can be made into different formats for the healing of both flat and deep infected chronic wounds without contamination of the wound or needing other modalities such as photothermal irradiation.

SUBMITTER: Pranantyo D 

PROVIDER: S-EPMC10830466 | biostudies-literature | 2024 Feb

REPOSITORIES: biostudies-literature

altmetric image

Publications

Hydrogel dressings with intrinsic antibiofilm and antioxidative dual functionalities accelerate infected diabetic wound healing.

Pranantyo Dicky D   Yeo Chun Kiat CK   Wu Yang Y   Fan Chen C   Xu Xiaofei X   Yip Yun Sheng YS   Vos Marcus Ivan Gerard MIG   Mahadevegowda Surendra H SH   Lim Priscilla Lay Keng PLK   Yang Liang L   Hammond Paula T PT   Leavesley David Ian DI   Tan Nguan Soon NS   Chan-Park Mary B MB  

Nature communications 20240201 1


Chronic wounds are often infected with biofilm bacteria and characterized by high oxidative stress. Current dressings that promote chronic wound healing either require additional processes such as photothermal irradiation or leave behind gross amounts of undesirable residues. We report a dual-functionality hydrogel dressing with intrinsic antibiofilm and antioxidative properties that are synergistic and low-leaching. The hydrogel is a crosslinked network with tethered antibacterial cationic poly  ...[more]

Similar Datasets

| S-EPMC8061386 | biostudies-literature
| S-EPMC8082736 | biostudies-literature
| S-EPMC10392784 | biostudies-literature
| S-EPMC6124756 | biostudies-literature
| S-EPMC8628698 | biostudies-literature
| S-EPMC11788471 | biostudies-literature
| S-EPMC9321852 | biostudies-literature
| S-EPMC11884173 | biostudies-literature
| S-EPMC10463485 | biostudies-literature