Project description:An ideal transformation-based omnidirectional cloak always relies on metamaterials with extreme parameters, which were previously thought to be too difficult to realize. For such a reason, in previous experimental proposals of invisibility cloaks, the extreme parameters requirements are usually abandoned, leading to inherent scattering. Here, we report on the first experimental demonstration of an omnidirectional cloak that satisfies the extreme parameters requirement, which can hide objects in a homogenous background. Instead of using resonant metamaterials that usually involve unavoidable absorptive loss, the extreme parameters are achieved using a nonresonant metamaterial comprising arrays of subwavelength metallic channels manufactured with 3D metal printing technology. A high level transmission of electromagnetic wave propagating through the present omnidirectional cloak, as well as significant reduction of scattering field, is demonstrated both numerically and experimentally. Our work may also inspire experimental realizations of the other full-parameter omnidirectional optical devices such as concentrator, rotators, and optical illusion apparatuses.
Project description:PurposeTo compare quantitative changes in macular parameters in diabetic patients detected by two optical coherence tomography angiography (OCTA) instruments.Methods80 phakic eyes were classified as no diabetes, diabetes without diabetic retinopathy (DR), mild non-proliferative diabetic retinopathy (NPDR), and severe NPDR or proliferative DR (PDR). OCTA was performed using devices from two manufacturers (Zeiss and Heidelberg). Superficial and deeper vascular skeleton density (SVSD, DVSD), superficial and deeper vessel area density (SVAD, DVAD), choriocapillaris flow voids (CCFV), and choroidal flow voids (CFV) were calculated. Inter-device comparisons were performed using the size comparison index (SCI) and the discrepancy index (DI).ResultsThe two devices were inconsistent in SVSD, DVSD, DVAD, CCFV and CFV parameters (all P < 0.05). In addition, the SCI was positive for DVAD (all P < 0.001) and negative for SVSD, DVSD, CCFV and CFV in all groups (all P <0.001), except for DVSD in severe NPDR or PDR. The discrepancy index was not significantly different among groups for SVD, SPD, DVD, DPD and CFV (all P> 0.05). The mean DI of CCFV was statistically different between the four groups (P < 0.001).ConclusionsThe two instruments were largely inconsistent in the measurement of macular parameters relevant to DR. The choice of imaging device can impact OCTA analytics and should be taken into account when drawing conclusions about DR-related changes.
Project description:An optical attractor based on a simple and easy to fabricate structured metal-dielectric-metal (SMDM) waveguide is proposed. The structured waveguide has a variable thickness in the vicinity of an embedded microsphere and allow for adiabatic nano-focusing of gap-surface plasmon polaritons (GSPPs). We show that the proposed system acts as an omnidirectional absorber across a broad spectral range. The geometrical optics approximation is used to provide a description of the ray trajectories in the system and identify the singularity of the deflection angle at the photon sphere. The analytical theory is validated by full-wave numerical simulations demonstrating adiabatic, deep sub-wavelength focusing of GSPPs and high local field enhancement. The proposed structured waveguide is an ideal candidate for the demonstration of reflection free omnidirectional absorption of GSPP in the optical and infrared frequency ranges.
Project description:Among various flat optical devices, metasurfaces have presented their great ability in efficient manipulation of light fields and have been proposed for variety of devices with specific functionalities. However, due to the high phase dispersion of their building blocks, metasurfaces significantly suffer from large chromatic aberration. Here we propose a design principle to realize achromatic metasurface devices which successfully eliminate the chromatic aberration over a continuous wavelength region from 1200 to 1680 nm for circularly-polarized incidences in a reflection scheme. For this proof-of-concept, we demonstrate broadband achromatic metalenses (with the efficiency on the order of ∼12%) which are capable of focusing light with arbitrary wavelength at the same focal plane. A broadband achromatic gradient metasurface is also implemented, which is able to deflect wide-band light by the same angle. Through this approach, various flat achromatic devices that were previously impossible can be realized, which will allow innovation in full-color detection and imaging.Metasurfaces suffer from large chromatic aberration due to the high phase dispersion of their building blocks, limiting their applications. Here, Wang et al. design achromatic metasurface devices which eliminate the chromatic aberration over a continuous region from 1200 to 1680 nm in a reflection schleme.
Project description:Flourishing in recent years, intelligent electronics is desirably pursued in many fields including bio-symbiotic, human physiology regulatory, robot operation, and human-computer interaction. To support this appealing vision, human-like tactile perception is urgently necessary for dexterous object manipulation. In particular, the real-time force perception with strength and orientation simultaneously is critical for intelligent electronic skin. However, it is still very challenging to achieve directional tactile sensing that has eminent properties, and at the same time, has the feasibility for scale expansion. Here, a fully soft capacitive omnidirectional tactile (ODT) sensor was developed based on the structure of MWCNTs coated stripe electrode and Ecoflex hemisphere array dielectric. The theoretical analysis of this structure was conducted for omnidirectional force detection by finite element simulation. Combined with the micro-spine and the hemispheric hills dielectric structure, this sensing structure could achieve omnidirectional detection with high sensitivity (0.306 ± 0.001 kPa-1 under 10 kPa) and a wide response range (2.55 Pa to 160 kPa). Moreover, to overcome the inherent disunity in flexible sensor units due to nano-materials and polymer, machine learning approaches were introduced as a prospective technical routing to recognize various loading angles and finally performed more than 99% recognition accuracy. The practical validity of the design was demonstrated by the detection of human motion, physiological activities, and gripping of a cup, which was evident to have great potential for tactile e-skin for digital medical and soft robotics.
Project description:Metasurfaces, artificial 2D structures, have been widely used for the design of various functionalities in optics. Jones matrix, a 2×2 matrix with eight parameters, provides the most complete characterization of the metasurface structures in linear optics, and the number of free parameters (i.e., degrees of freedom, DOFs) in the Jones matrix determines the limit to what functionalities we can realize. Great efforts have been made to continuously expand the number of DOFs, and a maximal number of six has been achieved recently. However, the realization of the ultimate goal with eight DOFs (full free parameters) has been proven as a great challenge so far. Here, we show that by cascading two layer metasurfaces and utilizing the gradient descent optimization algorithm, a spatially varying Jones matrix with eight DOFs is constructed and verified numerically and experimentally in optical frequencies. Such ultimate control unlocks opportunities to design optical functionalities that are unattainable with previously known methodologies and may find wide potential applications in optical fields.
Project description:The evolution of micro/nanoelectronics technology, including the shrinking of devices and integrated circuit components, has included the miniaturization of linear and coaxial structures to micro/nanoscale dimensions. This reduction in the size of coaxial structures may offer advantages to existing technologies and benefit the exploration and development of new technologies. The reduction in the size of coaxial structures has been realized with various permutations between metals, semiconductors and dielectrics for the core, shield, and annulus. This review will focus on fabrication schemes of arrays of metal - nonmetal - metal nanocoax structures using non-template and template methods, followed by possible applications. The performance and scientific advantages associated with nanocoax-based optical devices including waveguides, negative refractive index materials, light emitting diodes, and photovoltaics are presented. In addition, benefits and challenges that accrue from the application of novel nanocoax structures in energy storage, electronic and sensing devices are summarized.
Project description:Achieving perfect light absorption at a subwavelength-scale thickness has various advantageous in terms of cost, flexibility, weight, and performance for many different applications. However, obtaining perfect absorbers covering a wide range of wavelengths regardless of incident angle and input polarization without a complicated patterning process while maintaining a small thickness remains a challenge. In this paper, we demonstrate flat, lithography-free, ultrahigh omnidirectional, polarization-independent, broadband absorbers through effective dispersion engineering. The proposed absorbers show day-integrated solar energy absorption up to 96%, which is 32% better than with lossy semiconductor/metal absorbers. The proposed simple yet effective method can be applied to light absorption thin film structures based on various types of highly lossy semiconductor materials, including emerging 2D materials.
Project description:The controversial question of whether optical rotation data can be used to distinguish floral from honeydew honey was investigated. Specific optical rotation angles were determined for 41 honey samples, including floral, honeydew, and adulterated honey, indicating that moderate to high positive optical rotation angles were found for all adulterated samples measured. A strong correlation between the sugar profile and the specific optical rotation angle of honey was confirmed, and a method based on 13C NMR metabolomics was proposed to calculate specific optical rotation angles with good correlation with the experimental values. The results indicate that optical rotation is not a reliable method for distinguishing the origin of honey but could indicate adulteration.
Project description:SignificanceFull-field optical coherence microscopy (FF-OCM) is a prevalent technique for backscattering and phase imaging with epi-detection. Traditional methods have two limitations: suboptimal utilization of functional information about the sample and complicated optical design with several moving parts for phase contrast.AimWe report an OCM setup capable of generating dynamic intensity, phase, and pseudo-spectroscopic contrast with single-shot full-field video-rate imaging called bichromatic tetraphasic (BiTe) full-field OCM with no moving parts.ApproachBiTe OCM resourcefully uses the phase-shifting properties of anti-reflection (AR) coatings outside the rated bandwidths to create four unique phase shifts, which are detected with two emission filters for spectroscopic contrast.ResultsBiTe OCM overcomes the disadvantages of previous FF-OCM setup techniques by capturing both the intensity and phase profiles without any artifacts or speckle noise for imaging scattering samples in three-dimensional (3D). BiTe OCM also utilizes the raw data effectively to generate three complementary contrasts: intensity, phase, and color. We demonstrate BiTe OCM to observe cellular dynamics, image live, and moving micro-animals in 3D, capture the spectroscopic hemodynamics of scattering tissues along with dynamic intensity and phase profiles, and image the microstructure of fall foliage with two different colors.ConclusionsBiTe OCM can maximize the information efficiency of FF-OCM while maintaining overall simplicity in design for quantitative, dynamic, and spectroscopic characterization of biological samples.