Project description:ObjectiveTo determine the time of acceleration in white matter hyperintensity (WMH) burden, a common indicator of cerebrovascular pathology, in relation to conversion to mild cognitive impairment (MCI) in the elderly.MethodsA total of 181 cognitively intact elderly volunteers from the longitudinal, prospective, Oregon Brain Aging Study underwent yearly evaluations, including brain MRI, and cognitive testing. MRIs were analyzed for imaging markers of neurodegeneration: WMH and ventricular CSF (vCSF) volumes. The time before MCI, when the changes in WMH and vCSF burden accelerate, was assessed using a mixed-effects model with a change point for subjects who developed MCI during follow-up.ResultsDuring a follow-up duration of up to 19.6 years, 134 subjects converted to MCI. Acceleration in %WMH volume increase occurred 10.6 years before MCI onset. On average, the annual rate of change in %WMH increased an additional 3.3% after the change point. Acceleration in %vCSF volume increase occurred 3.7 years before the onset of MCI. Out of 63 subjects who converted to MCI and had autopsy, only 28.5% had Alzheimer disease (AD) as the sole etiology of their dementia, while almost just as many (24%) had both AD and significant ischemic cerebrovascular disease present.ConclusionsAcceleration in WMH burden, a common indicator of cerebrovascular disease in the elderly, is a pathologic change that emerges early in the presymptomatic phase leading to MCI. Longitudinal changes in WMH may thus be useful in determining those at risk for cognitive impairment and for planning strategies for introducing disease-modifying therapies prior to dementia onset.
Project description:Background and objectivesIt has been suggested that white matter hyperintensity lesions (WMHs), which typically progress over time, can also regress, and that this might be associated with favorable cognitive performance. We determined the prevalence of WMH regression in patients with cerebral small vessel disease (SVD) and examined which demographic, clinical, and radiological markers were associated with this regression.MethodsWe used semi-automated lesion marking methods to quantify WMH volume at multiple timepoints in three cohorts with symptomatic SVD; two with moderate-to-severe symptomatic SVD (the SCANS observational cohort and the control arm of the PRESERVE interventional trial) and one with mild-to-moderate SVD (the RUN DMC observational cohort). Mixed-effects ordered logistic regression models were used to test which factors predicted participants to show WMH regression.ResultsNo participants (0/98) in SCANS, 6/42 (14.3%) participants in PRESERVE, and 6/276 (2.2%) in RUN DMC showed WMH regression. On multivariate analysis, only lower WMH volume (OR: 0.36, 95% CI: 0.23-0.56) and better white matter microstructural integrity assessed by fractional anisotropy using diffusion tensor imaging (OR: 1.55, 95% CI: 1.07-2.24) predicted participant classification as regressor versus stable or progressor.DiscussionOnly a small proportion of participants demonstrated WMH regression across the three cohorts, when a blinded standardized assessment method was used. Subjects who showed regression had less severe imaging markers of disease at baseline. Our results show that lesion regression is uncommon in SVD and unlikely to be a major factor affecting the use of WMH quantification as an outcome for clinical trials.
Project description:BackgroundWhite matter hyperintensity (WMH) is one of the typical neuroimaging manifestations of cerebral small vessel disease (CSVD), and the WMH correlates closely to cognitive impairment (CI). CSVD patients with WMH own altered topological properties of brain functional network, which is a possible mechanism that leads to CI. This study aims to identify differences in the characteristics of some brain functional network among patients with different grades of WMH and estimates the correlations between these different brain functional network characteristics and cognitive assessment scores.Methods110 CSVD patients underwent 3.0 T Magnetic resonance imaging scans and neuropsychological cognitive assessments. WMH of each participant was graded on the basis of Fazekas grade scale and was divided into two groups: (A) WMH score of 1-2 points (n = 64), (B) WMH score of 3-6 points (n = 46). Topological indexes of brain functional network were analyzed using graph-theoretical method. T-test and Mann-Whitney U test was used to compare the differences in topological properties of brain functional network between groups. Partial correlation analysis was applied to explore the relationship between different topological properties of brain functional networks and overall cognitive function.ResultsPatients with high WMH scores exhibited decreased clustering coefficient values, global and local network efficiency along with increased shortest path length on whole brain level as well as decreased nodal efficiency in some brain regions on nodal level (p < 0.05). Nodal efficiency in the left lingual gyrus was significantly positively correlated with patients' total Montreal Cognitive Assessment (MoCA) scores (p < 0.05). No significant difference was found between two groups on the aspect of total MoCA and Mini-mental State Examination (MMSE) scores (p > 0.05).ConclusionTherefore, we come to conclusions that patients with high WMH scores showed less optimized small-world networks compared to patients with low WMH scores. Global and local network efficiency on the whole-brain level, as well as nodal efficiency in certain brain regions on the nodal level, can be viewed as markers to reflect the course of WMH.
Project description:The aim of this meta-analysis was to review systematically and to identify the relationship between the severity and location of white matter hyperintensities (WMHs) and the degree of cognitive decline in patients with Parkinson's disease (PD). We searched the PubMed, EMBASE, Web of Science, Ovid, and Cochrane Library databases for clinical trials of the severity and location of WMHs on the degree of cognitive impairment in PD through October 2020. We conducted the survey to compare the association of WMH burden in patients with PD with mild cognitive impairment (PD-MCI) versus those with normal cognition (PD-NC) and in patients with PD with dementia (PDD) versus those with PD without dementia (PD-ND). Nine studies with PD-MCI versus PD-NC and 10 studies with PDD versus PD-ND comparisons were included. The WMH burden in PD-MCI patients was significantly different compared to that in PD-NC patients (standard mean difference, SMD = 0.39, 95% CI: 0.12 to 0.66, p = 0.005), while there was no correlation shown in the age-matched subgroup of the comparison. In addition, PDD patients had a significantly higher burden of WMHs (SMD = 0.8, 95% CI: 0.44 to 1.71, p < 0.0001), especially deep white matter hyperintensities (SMD = 0.54, 95% CI: 0.36 to 0.73, p < 0.00001) and periventricular hyperintensities (SMD = 0.70, 95% CI: 0.36 to 1.04, p < 0.0001), than PD-NC patients, regardless of the adjustment of age. WMHs might be imaging markers for cognitive impairment in PDD but not in PD-MCI, regardless of age, vascular risk factors, or race. Further prospective studies are needed to validate the conclusions.
Project description:Functional changes of default mode network (DMN) have been proven to be closely associated with white matter hyperintensity (WMH) related cognitive impairment (CI). However, subsystem mechanisms of DMN underlying WMH-related CI remain unclear. The present study recruited WMH patients (n = 206) with mild CI and normal cognition, as well as healthy controls (HC, n = 102). Static/dynamic functional connectivity (FC) of the DMN's three subsystems were calculated using resting-state functional MRI. K-means clustering analyses were performed to extract distinct dynamic connectivity states. Compared with the WMH-NC group, the WMH-MCI group displayed lower static FC within medial temporal lobe (MTL) and core subsystem, between core-MTL subsystem, as well as between core and dorsal medial prefrontal cortex subsystem. All these static alterations were positively associated with information processing speed (IPS). Regarding dynamic FC, the WMH-MCI group exhibited higher dynamic FC within MTL subsystem than the HC and WMH-NC groups. Altered dynamic FC within MTL subsystem mediated the relationship between WMH and memory span (indirect effect: -0.2251, 95% confidence interval [-0.6295, -0.0267]). Additionally, dynamic FCs of DMN subsystems could be clustered into two recurring states. For dynamic FCs within MTL subsystem, WMH-MCI subjects exhibited longer mean dwell time (MDT) and higher reoccurrence fraction (RF) in a sparsely connected state (State 2). Altered MDT and RF in State 2 were negatively associated with IPS. Taken together, these findings indicated static/dynamic FC of DMN subsystems can provide relevant information on cognitive decline from different aspects, which provides a comprehensive view of subsystem mechanisms of DMN underlying WMH-related CI.
Project description:BackgroundWhite-matter hyperintensity (WMH) is the key magnetic resonance imaging (MRI) marker of cerebral small-vessel disease (CSVD). This study aimed to investigate whether habitat analysis based on physiologic MRI parameters can predict the progression of WMH and cognitive decline in CSVD.MethodsDiffusion- and perfusion-weighted imaging data were obtained from 69 patients with CSVD at baseline and at 1-year of follow-up. The white-matter region was classified into constant WMH, growing WMH, shrinking WMH, and normal-appearing white matter (NAWM) according to the T2-fluid-attenuated inversion recovery (FLAIR) sequences images at the baseline and follow-up. We employed k-means clustering on a voxel-wise basis to delineate WMH habitats, integrating multiple diffusion metrics and cerebral blood flow (CBF) values derived from perfusion data. The WMH at the baseline and the predicted WMH from the habitat analysis were used as regions of avoidance (ROAs). The decreased rate of global efficiency for the whole brain structural connectivity was calculated after removal of the ROA. The association between the decreased rate of global efficiency and Montreal Cognitive Assessment (MoCA) and mini-mental state examination (MMSE) scores was evaluated using Pearson correlation coefficients.ResultsWe found that the physiologic MRI habitats with lower fractional anisotropy and CBF values and higher mean diffusivity, axial diffusivity, and radial diffusivity values overlapped considerably with the new WMH (growing WMH of baseline) after a 1-year follow-up; the accuracy of distinguishing growing WMH from NAWM was 88.9%±12.7% at baseline. Similar results were also found for the prediction of shrinking WMH. Moreover, after the removal of the predicted WMH, a decreased rate of global efficiency had a significantly negative correlation with the MoCA and MMSE scores at follow-up.ConclusionsThis study revealed that a habitat analysis combining perfusion with diffusion parameters could predict the progression of WMH and related cognitive decline in patients with CSVD.
Project description:The association between serum free hemoglobin (sfHb) level and white matter hyperintensity (WMH) volume is controversial. This study is to examine this association considering nonlinearity, sex dimorphism, and WMH type. We enrolled 704 older adults among the participants of the Korean Longitudinal Study on Cognitive Aging and Dementia and visitors to the Dementia Clinic of Seoul National University Bundang Hospital. We measured sfHb level in the venous blood and WMH volume (VWMH) using fluid-attenuated inversion recovery magnetic resonance images. The association between sfHb level and periventricular VWMH was linear in men (linear regression; β = - 0.18, p = 0.006) and U-shaped in women (restricted cubic spline; F = 6.82, p < 0.001). sfHb level was not associated with deep VWMH in either sex. These findings were also observed in participants without anemia. To conclude, sfHb level is associated with periventricular VWMH in older adults of both sexes. Maintaining an optimal sfHb level may contribute to the prevention of WMH.
Project description:ObjectiveWhite matter hyperintensity (WMH) may be a marker of an underlying cerebral microangiopathy. Therefore, we hypothesized that WMH would be most severe in patients with lacunar stroke and intracerebral hemorrhage (ICH), 2 types of stroke in which cerebral small vessel (SV) changes are pathophysiologically relevant.MethodsWe determined WMH volume (WMHV) in cohorts of prospectively ascertained patients with acute ischemic stroke (AIS) (Massachusetts General Hospital [MGH], n = 628, and the Ischemic Stroke Genetics Study [ISGS], n = 263) and ICH (MGH, n = 122).ResultsMedian WMHV was 7.5 cm³ (interquartile range 3.4-14.7 cm³) in the MGH AIS cohort (mean age 65 ± 15 years). MGH patients with larger WMHV were more likely to have lacunar stroke compared with cardioembolic (odds ratio [OR] = 1.87 per SD normally transformed WMHV), large artery (OR = 2.25), undetermined (OR = 1.87), or other (OR = 1.85) stroke subtypes (p < 0.03). These associations were replicated in the ISGS cohort (p = 0.03). In a separate analysis, greater WMHV was seen in ICH compared with lacunar stroke (OR = 1.2, p < 0.02) and in ICH compared with all ischemic stroke subtypes combined (OR = 1.34, p < 0.007).ConclusionsGreater WMH burden was associated with SV stroke compared with other ischemic stroke subtypes and, even more strongly, with ICH. These data, from 2 independent samples, support the model that increasing WMHV is a marker of more severe cerebral SV disease and provide further evidence for links between the biology of WMH and SV stroke.
Project description:Microstructural abnormalities of white matter fiber tracts are considered as one of the etiology of diabetes-induced neurological disorders. We explored the cerebral white matter microstructure alteration accurately, and to analyze its correlation between cerebral small vessel disease (CSVD) burden and cognitive performance in type 2 diabetes mellitus (T2DM). The clinical-laboratory data, cognitive scores [including mini-mental state examination (MMSE), Montreal cognitive assessment (MoCA), California verbal learning test (CVLT), and symbol digit modalities test (SDMT)], CSVD burden scores of the T2DM group (n = 34) and healthy control (HC) group (n = 21) were collected prospectively. Automatic fiber quantification (AFQ) was applied to generate bundle profiles along primary white matter fiber tracts. Diffusion tensor images (DTI) metrics and 100 nodes of white matter fiber tracts between groups were compared. Multiple regression analysis was used to analyze the relationship between DTI metrics and cognitive scores and CSVD burden scores. For fiber-wise and node-wise, DTI metrics in some commissural and association fibers were increased in T2DM. Some white matter fiber tracts DTI metrics were independent predictors of cognitive scores and CSVD burden scores. White matter fiber tracts damage in patients with T2DM may be characterized in specific location, especially commissural and association fibers. Aberrational specific white matter fiber tracts are associated with visuospatial function and CSVD burden.
Project description:ObjectiveWe aimed to determine whether combining white matter hyperintensity (WMH) with neurofilament light chain (NfL) could provide additional information for cognition in older adults.MethodsUtilizing data from the population-based Chicago Health and Aging Project, we studied 701 individuals with both biomarkers and cognitive data during the follow-up period. NfL was measured using an ultrasensitive immunoassay, single-molecule array technology. MRI scans of the brain were acquired using 1.5-T systems. Global cognitive function was created as a composite measure of four neuropsychological tests, standardized and averaged to z-scores. Multivariable linear mixed-effects models were used to evaluate the association of WMH and NfL with the rate of cognitive decline.ResultsHigher WMH and NfL were associated with a faster rate of cognitive decline during the follow-up; β -coefficients (95%CIs) were -0.011 (-0.02, -0.001) and -0.010 (-0.017, -0.003), respectively. In individuals with lower concentration of NfL (i.e., bottom tertile), a higher WMH volume was associated with a faster cognitive decline ( β : -0.030; 95%CI -0.046, -0.014). Similarly, in individuals with lower volumes of WMH (i.e., bottom tertile), a higher concentrations of NfL was associated with a faster cognitive decline ( β : -0.023; 95%CI -0.042, -0.005). When we combined WMH with NfL, we noted a graded association with increasing volumes of WMH, particularly in people with lower NfL values.InterpretationWhile both biomarkers, WMH and NfL, were similarly associated with the annual rate of cognitive decline, our study suggests that they provide different underlying mechanisms affecting cognition.