Project description:Human-caused global change produces biotic and abiotic conditions that increase the uncertainty and risk of failure of restoration efforts. A focus of managing for resiliency, that is, the ability of the system to respond to disturbance, has the potential to reduce this uncertainty and risk. However, identifying what drives resiliency might depend on how one measures it. An example of a system where identifying how the drivers of different aspects of resiliency can inform restoration under climate change is the northern coast of California, where kelp experienced a decline in coverage of over 95% due to the combination of an intense marine heat wave and the functional extinction of the primary predator of the kelp-grazing purple sea urchin, the sunflower sea star. Although restoration efforts focused on urchin removal and kelp reintroduction in this system are ongoing, the question of how to increase the resiliency of this system to future marine heat waves remains open. In this paper, we introduce a dynamical model that describes a tritrophic food chain of kelp, purple urchins, and a purple urchin predator such as the sunflower sea star. We run a global sensitivity analysis of three different resiliency metrics (recovery likelihood, recovery rate, and resistance to disturbance) of the kelp forest to identify their ecological drivers. We find that each metric depends the most on a unique set of drivers: Recovery likelihood depends the most on live and drift kelp production, recovery rate depends the most on urchin production and feedbacks that determine urchin grazing on live kelp, and resistance depends the most on feedbacks that determine predator consumption of urchins. Therefore, an understanding of the potential role of predator reintroduction or recovery in kelp systems relies on a comprehensive approach to measuring resiliency.
Project description:Environmental DNA (eDNA) metabarcoding is an increasingly important tool for surveying biodiversity in marine ecosystems. However, the scale of temporal and spatial variability in eDNA signatures, and how this variation may impact eDNA-based marine biodiversity assessments, remains uncertain. To address this question, we systematically examined variation in vertebrate eDNA signatures across depth (0 m to 10 m) and horizontal space (nearshore kelp forest and surf zone) over three successive days in Southern California. Across a broad range of teleost fish and elasmobranchs, results showed significant variation in species richness and community assemblages between surface and depth, reflecting microhabitat depth preferences of common Southern California nearshore rocky reef taxa. Community assemblages between nearshore and surf zone sampling stations at the same depth also differed significantly, consistent with known habitat preferences. Additionally, assemblages also varied across three sampling days, but 69% of habitat preferences remained consistent. Results highlight the sensitivity of eDNA in capturing fine-scale vertical, horizontal, and temporal variation in marine vertebrate communities, demonstrating the ability of eDNA to capture a highly localized snapshot of marine biodiversity in dynamic coastal environments.
Project description:Preserving biodiversity is a global challenge requiring data on species' distribution and abundance over large geographic and temporal scales. However, traditional methods to survey mobile species' distribution and abundance in marine environments are often inefficient, environmentally destructive, or resource-intensive. Metabarcoding of environmental DNA (eDNA) offers a new means to assess biodiversity and on much larger scales, but adoption of this approach for surveying whole animal communities in large, dynamic aquatic systems has been slowed by significant unknowns surrounding error rates of detection and relevant spatial resolution of eDNA surveys. Here, we report the results of a 2.5 km eDNA transect surveying the vertebrate fauna present along a gradation of diverse marine habitats associated with a kelp forest ecosystem. Using PCR primers that target the mitochondrial 12S rRNA gene of marine fishes and mammals, we generated eDNA sequence data and compared it to simultaneous visual dive surveys. We find spatial concordance between individual species' eDNA and visual survey trends, and that eDNA is able to distinguish vertebrate community assemblages from habitats separated by as little as ~60 m. eDNA reliably detected vertebrates with low false-negative error rates (1/12 taxa) when compared to the surveys, and revealed cryptic species known to occupy the habitats but overlooked by visual methods. This study also presents an explicit accounting of false negatives and positives in metabarcoding data, which illustrate the influence of gene marker selection, replication, contamination, biases impacting eDNA count data and ecology of target species on eDNA detection rates in an open ecosystem.
Project description:The potential contribution of kelp forests to blue carbon sinks is currently of great interest but interspecific variance has received no attention. In the temperate Northeast Atlantic, kelp forest composition is changing due to climate-driven poleward range shifts of cold temperate Laminaria digitata and Laminaria hyperborea and warm temperate Laminaria ochroleuca. To understand how this might affect the carbon sequestration potential (CSP) of this ecosystem, we quantified interspecific differences in carbon export and decomposition alongside changes in detrital photosynthesis and biochemistry. We found that while warm temperate kelp exports up to 71% more carbon per plant, it decomposes up to 155% faster than its boreal congeners. Elemental stoichiometry and polyphenolic content cannot fully explain faster carbon turnover, which may be attributable to contrasting tissue toughness or unknown biochemical and structural defenses. Faster decomposition causes the detrital photosynthetic apparatus of L. ochroleuca to be overwhelmed 20 days after export and lose integrity after 36 days, while detritus of cold temperate species maintains carbon assimilation. Depending on the photoenvironment, detrital photosynthesis could further exacerbate interspecific differences in decomposition via a potential positive feedback loop. Through compositional change such as the predicted prevalence of L. ochroleuca, ocean warming may therefore reduce the CSP of such temperate marine forests.
Project description:As primary producers and ecosystem engineers, kelp (generally Order Laminariales) are ecologically important, and their decline could have far-reaching consequences. Kelp are valuable in forming habitats for fish and invertebrates and are crucial for adaptation to climate change by creating coastal defenses and in providing key functions, such as carbon sequestration and food provision. Kelp are threatened by multiple stressors, such as climate change, over-harvesting of predators, and pollution. In this opinion paper, we discuss how these stressors may interact to affect kelp, and how this varies under different contexts. We argue that more research that bridges kelp conservation and multiple stressor theory is needed and outline key questions that should be addressed as a priority. For instance, it is important to understand how previous exposure (either to earlier generations or life stages) determines responses to emerging stressors, and how responses in kelp scale up to alter food webs and ecosystem functioning. By increasing the temporal and biological complexity of kelp research in this way, we will improve our understanding allowing better predictions. This research is essential for the effective conservation and potential restoration of kelp in our rapidly changing world.
Project description:Ecosystems are changing at alarming rates because of climate change and a wide variety of other anthropogenic stressors. These stressors have the potential to cause phase shifts to less productive ecosystems. A major challenge for ecologists is to identify ecosystem attributes that enhance resilience and can buffer systems from shifts to less desirable alternative states. In this study, we used the Northern Channel Islands, California, as a model kelp forest ecosystem that had been perturbed from the loss of an important sea star predator due to a sea star wasting disease. To determine the mechanisms that prevent phase shifts from productive kelp forests to less productive urchin barrens, we compared pre- and postdisease predator assemblages as predictors of purple urchin densities. We found that prior to the onset of the disease outbreak, the sunflower sea star exerted strong predation pressures and was able to suppress purple urchin populations effectively. After the disease outbreak, which functionally extirpated the sunflower star, we found that the ecosystem response-urchin and algal abundances-depended on the abundance and/or size of remaining predator species. Inside Marine Protected Areas (MPAs), the large numbers and sizes of other urchin predators suppressed purple urchin populations resulting in kelp and understory algal growth. Outside of the MPAs, where these alternative urchin predators are fished, less abundant, and smaller, urchin populations grew dramatically in the absence of sunflower stars resulting in less kelp at these locations. Our results demonstrate that protected trophic redundancy inside MPAs creates a net of stability that could limit kelp forest ecosystem phase shifts to less desirable, alternative states when perturbed. This highlights the importance of harboring diversity and managing predator guilds.
Project description:Trade-offs and synergies in the supply of forest ecosystem services are common but the drivers of these relationships are poorly understood. To guide management that seeks to promote multiple services, we investigated the relationships between 12 stand-level forest attributes, including structure, composition, heterogeneity and plant diversity, plus 4 environmental factors, and proxies for 14 ecosystem services in 150 temperate forest plots. Our results show that forest attributes are the best predictors of most ecosystem services and are also good predictors of several synergies and trade-offs between services. Environmental factors also play an important role, mostly in combination with forest attributes. Our study suggests that managing forests to increase structural heterogeneity, maintain large trees, and canopy gaps would promote the supply of multiple ecosystem services. These results highlight the potential for forest management to encourage multifunctional forests and suggest that a coordinated landscape-scale strategy could help to mitigate trade-offs in human-dominated landscapes.
Project description:BACKGROUND:Kelps (Laminariales, Phaeophyceae) are brown macroalgae of utmost ecological, and increasingly economic, importance on temperate to polar rocky shores. Omics approaches in brown algae are still scarce and knowledge of their acclimation mechanisms to the changing conditions experienced in coastal environments can benefit from the application of RNA-sequencing. Despite evidence of ecotypic differentiation, transcriptomic responses from distinct geographical locations have, to our knowledge, never been studied in the sugar kelp Saccharina latissima so far. RESULTS:In this study we investigated gene expression responses using RNA-sequencing of S. latissima from environments with contrasting temperature and salinity conditions - Roscoff, in temperate eastern Atlantic, and Spitsbergen in the Arctic. Juvenile sporophytes derived from uniparental stock cultures from both locations were pre-cultivated at 8 °C and SA 30. Sporophytes acclimated to 0 °C, 8 °C and 15 °C were exposed to a low salinity treatment (SA 20) for 24 h. Hyposalinity had a greater impact at the transcriptomic level than the temperature alone, and its effects were modulated by temperature. Namely, photosynthesis and pigment synthesis were extensively repressed by low salinity at low temperatures. Although some responses were shared among sporophytes from the different sites, marked differences were revealed by principal component analysis, differential expression and GO enrichment. The interaction between low temperature and low salinity drove the largest changes in gene expression in sporophytes from Roscoff while specimens from Spitsbergen required more metabolic adjustment at higher temperatures. Moreover, genes related to cell wall adjustment were differentially expressed between Spitsbergen and Roscoff control samples. CONCLUSIONS:Our study reveals interactive effects of temperature and salinity on transcriptomic profiles in S. latissima. Moreover, our data suggest that under identical culture conditions sporophytes from different locations diverge in their transcriptomic responses. This is probably connected to variations in temperature and salinity in their respective environment of origin. The current transcriptomic results support the plastic response pattern in sugar kelp which is a species with several reported ecotypes. Our data provide the baseline for a better understanding of the underlying processes of physiological plasticity and may help in the future to identify strains adapted to specific environments and its genetic control.
Project description:Species diversity is important for a range of ecosystem processes and properties, including the resistance to single and multiple stressors. It has been suggested that genetic diversity may play a similar role, but empirical evidence is still relatively scarce. Here, we report the results of a microcosm experiment where four strains of the marine diatom Skeletonema marinoi were grown in monoculture and in mixture under a factorial combination of temperature and salinity stress. The strains differed in their susceptibility to the two stressors and no strain was able to survive both stressors simultaneously. Strong competition between the genotypes resulted in the dominance of one strain under both control and salinity stress conditions. The overall productivity of the mixture, however, was not related to the dominance of this strain, but was instead dependent on the treatment; under control conditions we observed a positive effect of genetic richness, whereas a negative effect was observed in the stress treatments. This suggests that interactions among the strains can be both positive and negative, depending on the abiotic environment. Our results provide additional evidence that the biodiversity-ecosystem functioning relationship is also relevant at the level of genetic diversity.
Project description:Understanding how plant functional traits shape nutrient limitation and cycling on land is a major challenge in ecology. This is especially true for lowland forest ecosystems of the tropics which can be taxonomically and functionally diverse and rich in bioavailable nitrogen (N). In many tropical regions, however, diverse forests occur side-by-side with monodominant forest (one species >60% of canopy); the long-term biogeochemical consequences of tree monodominance are unclear. Particularly uncertain is whether the monodominant plant-soil system modifies nutrient balance at the ecosystem level. Here, we use chemical and stable isotope techniques to examine N cycling in old-growth Mora excelsa and diverse watershed rainforests on the island of Trinidad. Across 26 small watershed forests and 4 years, we show that Mora monodominance reduces bioavailable nitrate in the plant-soil system to exceedingly low levels which, in turn, results in small hydrologic and gaseous N losses at the watershed-level relative to adjacent N-rich diverse forests. Bioavailable N in soils and streams remained low and remarkably stable through time in Mora forests; N levels in diverse forests, on the other hand, showed high sensitivity to seasonal and inter-annual rainfall variation. Total mineral N losses from diverse forests exceeded inputs from atmospheric deposition, consistent with N saturation, while losses from Mora forests did not, suggesting N limitation. Our measures suggest that this difference cannot be explained by environmental factors but instead by low internal production and efficient retention of bioavailable N in the Mora plant-soil system. These results demonstrate ecosystem-level consequences of a tree species on the N cycle opposite to cases where trees enhance ecosystem N supply via N2 fixation and suggest that, over time, Mora monodominance may generate progressive N draw-down in the plant-soil system.