Project description:BackgroundThere was a lack of information about prognostic accuracy of time to sputum culture conversion (SCC) in forecasting cure among extensively drug-resistant tuberculosis (XDR-TB) patients. Therefore, this study evaluated the prognostic accuracy of SCC at various time points in forecasting cure among XDR-TB patients.MethodsThis retrospective observational study included 355 eligible pulmonary XDR-TB patients treated at 27 centers in Pakistan between 01-05-2010 and 30-06-2017. The baseline and follow-up information of patients from treatment initiation until the end of treatment were retrieved from electronic nominal recording and reporting system. Time to SCC was analyzed by Kaplan-Meier method, and differences between groups were compared through log-rank test. Predictors of time to SCC and cure were respectively evaluated by multivariate Cox proportional hazards and binary logistic regression analyses. A p-value < 0.05 was considered statistically significant.ResultsA total of 226 (63.6%) and 146 (41.1%) patients respectively achieved SCC and cure. Median time to SCC was significantly shorter in patients who achieved cure, 3 months (95% confidence interval [CI]: 2.47-3.53), than those who did not (median: 10 months, 95% CI: 5.24-14.76) (p-value < 0.001, Log-rank test). Patient's age > 40 years (hazards ratio [HR] = 0.632, p-value = 0.004), baseline sputum grading of scanty, + 1 (HR = 0.511, p-value = 0.002), + 2, + 3 (HR = 0.523, p-value = 0.001) and use of high dose isoniazid (HR = 0.463, p-value = 0.004) were significantly associated with early SCC. Only SCC at 6 month of treatment had statistically significant association with cure (odds ratio = 15.603, p-value < 0.001). In predicting cure, the sensitivities of SCC at 2, 4 and 6 months were respectively 41.8% (95%CI: 33.7-50.2), 69.9% (95%CI: 61.7-77.2) and 84.9% (95%CI: 78.1-90.3), specificities were respectively, 82.8% (95%CI: 76.9-87.6), 74.6% (95%CI: 68.2-80.4) and 69.4% (95%CI: 62.6-75.5) and prognostic accuracies were respectively 65.9% (95%CI: 60.7-70.8), 72.7% (95%CI: 67.7-77.2) and 75.8% (95%CI: 71.0-80.1).ConclusionIn forecasting cure, SCC at month 6 of treatment performed better than SCC at 2 and 4 months. However, it would be too long for clinicians to wait for 6 months to decide about the regimen efficacy. Therefore, with somewhat comparable prognostic accuracy to that SCC at 6 month, using SCC at 4 month of treatment as a prognostic marker in predicting cure among XDR-TB patients can decrease the clinicians waiting time to decide about the regimen efficacy.
Project description:BackgroundConversion of sputum culture from positive to negative for M. tuberculosis is a key indicator of treatment response. An initial positive culture is a pre-requisite to observe conversion. Consequently, patients with a missing or negative initial culture are excluded from analyses of conversion outcomes. To identify the initial, or "baseline" culture, researchers must define a sample collection interval. An interval extending past treatment initiation can increase sample size but may introduce selection bias because patients without a positive pre-treatment culture must survive and remain in care to have a culture in the post-treatment interval.MethodsWe used simulated data and data from the endTB observational cohort to investigate the potential for bias when extending baseline culture intervals past treatment initiation. We evaluated bias in the proportion with six-month conversion.ResultsIn simulation studies, the potential for bias depended on the proportion of patients missing a pre-treatment culture, proportion with conversion, proportion culture positive at treatment initiation, and proportion of patients missing a pre-treatment culture who would have been observed to be culture positive, had they had a culture. In observational data, the maximum potential for bias when reporting the proportion with conversion reached five percentage points in some sites.ConclusionExtending the allowable baseline interval past treatment initiation may introduce selection bias. If investigators choose to extend the baseline collection interval past treatment initiation, the proportion missing a pre-treatment culture and the number of deaths and losses to follow up during the post-treatment allowable interval should be clearly enumerated.
Project description:Patients with multidrug-resistant tuberculosis who received regimens containing high-dose isoniazid (INHHD) had similar time to culture conversion and treatment outcomes as patients who received regimens with bedaquiline. INHHD is an inexpensive and safe medication that may contribute additive efficacy in combination regimens.
Project description:Background. Diabetes is a risk factor for active tuberculosis (TB), but little is known about the relationship between diabetes and multidrug-resistant (MDR) TB. We aimed to assess risk factors for primary MDR TB, including diabetes, and determine whether diabetes reduced the rate of sputum culture conversion among patients with MDR TB. Methods. From 2011 to 2014, we conducted a cohort study at the National Center for Tuberculosis and Lung Diseases in Tbilisi, Georgia. Adult (≥35 years) patients with primary TB were eligible. Multidrug-resistant TB was defined as resistance to at least rifampicin and isoniazid. Patients with capillary glycosylated hemoglobin (HbA1c) ≥ 6.5% or previous diagnosis were defined to have diabetes. Polytomous regression was used to estimate the association of patient characteristics with drug resistance. Cox regression was used to compare rates of sputum culture conversion in patients with and without diabetes. Results. Among 318 patients with TB, 268 had drug-susceptibility test (DST) results. Among patients with DST results, 19.4% (52 of 268) had primary MDR TB and 13.4% (36 of 268) had diabetes. In multivariable analyses, diabetes (adjusted odds ratio [aOR], 2.51; 95% confidence interval [CI], 1.00-6.31) and lower socioeconomic status (aOR, 3.51; 95% CI, 1.56-8.20) were associated with primary MDR TB. Among patients with primary MDR TB, 44 (84.6%) converted sputum cultures to negative. The rate of sputum culture conversion was lower among patients with diabetes (adjusted hazard ratio [aHR], 0.34; 95% CI, .13-.87) and among smokers (aHR, 0.16; 95% CI, .04-.61). Conclusions. We found diabetes was associated with an increased risk of primary MDR TB; both diabetes and smoking were associated with a longer time to sputum culture conversion.
Project description:BackgroundIn Ethiopia, Multi-drug resistant Tuberculosis (MDR-TB) is one of the major public health problems that need great attention. Time to sputum culture conversion is often used as an early predictive value for the final treatment outcome. Although guidelines for MDR-TB are frequently designed, medication freely provided, and centers for treatment duly expanded, studies on time to sputum culture conversion have been very limited in Ethiopia. This study was aimed at determining the time to sputum culture conversion and the determinants among MDR-TB patients at public Hospitals of the Amhara Regional State.MethodsA retrospective follow up study was conducted between September 2010 and December 2016. Three hundred ninety two MDR-TB patients were included in the study. Parametric frailty models were fitted and Cox Snell residual was used for goodness of fit, which the Akaike's information criteria was used for model selection. Adjusted hazard ratio (AHR) with a 95% confidence interval (CI) was reported to show the strength of association.ResultOut of the 392 participants, sputum culture changed for 340(86.7%) during the follow up period. The median culture conversion time in this study was 65 (60-70 days). Alcohol drinking (AHR = 3.79, 95%CI = 1.65-8.68), sputum smear grading +2 (AHR = 0.39, 95%CI 0.19-0.79), smear grading +3 (AHR = 0.30, CI = 0.14-064), cavitations (AHR = 0.36, 95%CI = 0.19-0.68), and consolidation (AHR = 0.29, CI = 0.13-0.69) were the determinants of time to sputum culture conversion.ConclusionIn this study, time to sputum culture was rapid as compared to 4 months WHO recommendation. Alcohol drinking, sputum smear grading, cavitations and consolidations were found to be the determinants of time to sputum culture conversion. Therefore, providing a special attention to patients who had baseline radiological finding is recommended, high bacillary load and patients with a history of alcohol intake at baseline should be given priority.
Project description:The emergence of multidrug resistant-tuberculosis (MDR-TB), defined as Mycobacterium tuberculosis strains with in vitro resistance to at least isoniazid and rifampicin, has necessitated evaluation and validation of appropriate surrogate endpoints for treatment response in drug trials for MDR-TB. The trial that has demonstrated efficacy of bedaquiline, a diarylquinoline that inhibits mycobacterial ATP synthase, possesses the requisite features to conduct this evaluation. Approval of bedaquiline for use in MDR-TB was based primarily on the results of the controlled C208 Stage II study (ClinicalTrials.gov number, NCT00449644) including 160 patients randomized 1:1 to receive bedaquiline or placebo for 24 weeks when added to an 18-24-month preferred five-drug background regimen. Since randomization in C208 Stage II was preserved until study end, the trial results allow for the investigation of the complex relationship between sustained durable outcome with either Week 8 or Week 24 culture conversion as putative surrogate endpoints. The relationship between Week 120 outcome with Week 8 or Week 24 culture conversion was investigated using a descriptive analysis and with a recently developed statistical methodology for surrogate endpoint evaluation using methods of causal inference. The results demonstrate that sputum culture conversion at 24 weeks is more reliable than sputum culture conversion at 8 weeks when assessing the outcome of adding one new drug to a MDR-TB regimen.
Project description:Sputum cultures are an important tool in monitoring the response to tuberculosis treatment, especially in multidrug-resistant tuberculosis. There has, however, been little study of the effect of treatment regimen composition on culture conversion. Well-designed clinical trials of new anti-tuberculosis drugs require this information to establish optimized background regimens for comparison. We conducted a retrospective cohort study to assess whether the use of an aggressive multidrug-resistant tuberculosis regimen was associated with more rapid sputum culture conversion. We conducted Cox proportional-hazards analyses to examine the relationship between receipt of an aggressive regimen for the 14 prior consecutive days and sputum culture conversion. Sputum culture conversion was achieved in 519 (87.7%) of the 592 patients studied. Among patients who had sputum culture conversion, the median time to conversion was 59 days (IQR: 31-92). In 480 patients (92.5% of those with conversion), conversion occurred within the first six months of treatment. Exposure to an aggressive regimen was independently associated with sputum culture conversion during the first six months of treatment (HR: 1.36; 95% CI: 1.10, 1.69). Infection with human immunodeficiency virus (HR 3.36; 95% CI: 1.47, 7.72) and receiving less exposure to tuberculosis treatment prior to the individualized multidrug-resistant tuberculosis regimen (HR: 1.58; 95% CI: 1.28, 1.95) were also independently positively associated with conversion. Tachycardia (HR: 0.77; 95% CI: 0.61, 0.98) and respiratory difficulty (HR: 0.78; 95% CI: 0.62, 0.97) were independently associated with a lower rate of conversion. This study is the first demonstrating that the composition of the multidrug-resistant tuberculosis treatment regimen influences the time to culture conversion. These results support the use of an aggressive regimen as the optimized background regimen in trials of new anti-TB drugs.
Project description:BackgroundTwo weeks' isolation is widely recommended for people commencing treatment for pulmonary tuberculosis (TB). The evidence that this corresponds to clearance of potentially infectious tuberculous mycobacteria in sputum is not well established. This World Health Organization-commissioned review investigated sputum sterilisation dynamics during TB treatment.Methods and findingsFor the main analysis, 2 systematic literature searches of OvidSP MEDLINE, Embase, and Global Health, and EBSCO CINAHL Plus were conducted to identify studies with data on TB infectiousness (all studies to search date, 1 December 2017) and all randomised controlled trials (RCTs) for drug-susceptible TB (from 1 January 1990 to search date, 20 February 2018). Included articles reported on patients receiving effective treatment for culture-confirmed drug-susceptible pulmonary TB. The outcome of interest was sputum bacteriological conversion: the proportion of patients having converted by a defined time point or a summary measure of time to conversion, assessed by smear or culture. Any study design with 10 or more particpants was considered. Record sifting and data extraction were performed in duplicate. Random effects meta-analyses were performed. A narrative summary additionally describes the results of a systematic search for data evaluating infectiousness from humans to experimental animals (PubMed, all studies to 27 March 2018). Other evidence on duration of infectiousness-including studies reporting on cough dynamics, human tuberculin skin test conversion, or early bactericidal activity of TB treatments-was outside the scope of this review. The literature search was repeated on 22 November 2020, at the request of the editors, to identify studies published after the previous censor date. Four small studies reporting 3 different outcome measures were identified, which included no data that would alter the findings of the review; they are not included in the meta-analyses. Of 5,290 identified records, 44 were included. Twenty-seven (61%) were RCTs and 17 (39%) were cohort studies. Thirteen studies (30%) reported data from Africa, 12 (27%) from Asia, 6 (14%) from South America, 5 (11%) from North America, and 4 (9%) from Europe. Four studies reported data from multiple continents. Summary estimates suggested smear conversion in 9% of patients at 2 weeks (95% CI 3%-24%, 1 single study [N = 1]), and 82% of patients at 2 months of treatment (95% CI 78%-86%, N = 10). Among baseline smear-positive patients, solid culture conversion occurred by 2 weeks in 5% (95% CI 0%-14%, N = 2), increasing to 88% at 2 months (95% CI 84%-92%, N = 20). At equivalent time points, liquid culture conversion was achieved in 3% (95% CI 1%-16%, N = 1) and 59% (95% CI 47%-70%, N = 8). Significant heterogeneity was observed. Further interrogation of the data to explain this heterogeneity was limited by the lack of disaggregation of results, including by factors such as HIV status, baseline smear status, and the presence or absence of lung cavitation.ConclusionsThis systematic review found that most patients remained culture positive at 2 weeks of TB treatment, challenging the view that individuals are not infectious after this interval. Culture positivity is, however, only 1 component of infectiousness, with reduced cough frequency and aerosol generation after TB treatment initiation likely to also be important. Studies that integrate our findings with data on cough dynamics could provide a more complete perspective on potential transmission of Mycobacterium tuberculosis by individuals on treatment.Trial registrationSystematic review registration: PROSPERO 85226.
Project description:The current methods available to diagnose antimicrobial-resistant Mycobacterium tuberculosis infections require a positive culture or only test a limited number of resistance-associated mutations. A rapid accurate identification of antimicrobial resistance enables the prompt initiation of effective treatment. Here, we determine the utility of whole-genome sequencing (WGS) of M. tuberculosis directly from routinely obtained diagnostic sputum samples to provide a comprehensive resistance profile compared to that from mycobacterial growth indicator tube (MGIT) WGS. We sequenced M. tuberculosis from 43 sputum samples by targeted DNA enrichment using the Agilent SureSelectXT kit, and 43 MGIT positive samples from each participant. Thirty two (74%) sputum samples and 43 (100%) MGIT samples generated whole genomes. The times to antimicrobial resistance profiles and concordance were compared with Xpert MTB/RIF and phenotypic resistance testing from cultures of the same samples. Antibiotic susceptibility could be predicted from WGS of sputum within 5 days of sample receipt and up to 24 days earlier than WGS from MGIT culture and up to 31 days earlier than phenotypic testing. Direct sputum results could be reduced to 3 days with faster hybridization and if only regions encoding drug resistance are sequenced. We show that direct sputum sequencing has the potential to provide comprehensive resistance detection significantly faster than MGIT whole-genome sequencing or phenotypic testing of resistance from cultures in a clinical setting. This improved turnaround time enables prompt appropriate treatment with associated patient and health service benefits. Improvements in sample preparation are necessary to ensure comparable sensitivities and complete resistance profile predictions in all cases.
Project description:BackgroundPeople with radiographic evidence for pulmonary tuberculosis (TB), but negative sputum cultures, have increased risk of developing culture-positive TB. Recent expansion of X-ray screening is leading to increased identification of this group. We set out to synthesise the evidence for treatment to prevent progression to culture-positive disease.MethodsWe conducted a systematic review and meta-analysis. We searched for prospective trials evaluating the efficacy of TB regimens against placebo, observation, or alternative regimens, for the treatment of adults and children with radiographic evidence of TB but culture-negative respiratory samples. Databases were searched up to 18 Oct 2022. Study quality was assessed using ROB 2·0 and ROBINS-I. The primary outcome was progression to culture-positive TB. Meta-analysis with a random effects model was conducted to estimate pooled efficacy. This study was registered with PROSPERO (CRD42021248486).FindingsWe included 13 trials (32,568 individuals) conducted between 1955 and 2018. Radiographic and bacteriological criteria for inclusion varied. 19·1% to 57·9% of participants with active x-ray changes and no treatment progressed to culture-positive disease. Progression was reduced with any treatment (6 studies, risk ratio [RR] 0·27, 95%CI 0·13-0·56), although multi-drug TB treatment (RR 0·11, 95%CI 0·05-0·23) was significantly more effective than isoniazid treatment (RR 0·63, 95%CI 0·35-1·13) (p = 0·0002).InterpretationMulti-drug regimens were associated with significantly reduced risk of progression to TB disease for individuals with radiographically apparent, but culture-negative TB. However, most studies were old, conducted prior to the HIV epidemic and with outdated regimens. New clinical trials are required to identify the optimal treatment approach.