Unknown

Dataset Information

0

Classification of autism spectrum disorder using electroencephalography in Chinese children: a cross-sectional retrospective study.


ABSTRACT: Autism spectrum disorder (ASD) is a complex neurodevelopmental condition characterized by diverse clinical features. EEG biomarkers such as spectral power and functional connectivity have emerged as potential tools for enhancing early diagnosis and understanding of the neural processes underlying ASD. However, existing studies yield conflicting results, necessitating a comprehensive, data-driven analysis. We conducted a retrospective cross-sectional study involving 246 children with ASD and 42 control children. EEG was collected, and diverse EEG features, including spectral power and spectral coherence were extracted. Statistical inference methods, coupled with machine learning models, were employed to identify differences in EEG features between ASD and control groups and develop classification models for diagnostic purposes. Our analysis revealed statistically significant differences in spectral coherence, particularly in gamma and beta frequency bands, indicating elevated long range functional connectivity between frontal and parietal regions in the ASD group. Machine learning models achieved modest classification performance of ROC-AUC at 0.65. While machine learning approaches offer some discriminative power classifying individuals with ASD from controls, they also indicate the need for further refinement.

SUBMITTER: Ke SY 

PROVIDER: S-EPMC10850305 | biostudies-literature | 2024

REPOSITORIES: biostudies-literature

altmetric image

Publications

Classification of autism spectrum disorder using electroencephalography in Chinese children: a cross-sectional retrospective study.

Ke Si Yang SY   Wu Huiwen H   Sun Haoqi H   Zhou Aiqin A   Liu Jianhua J   Zheng Xiaoyun X   Liu Kevin K   Westover M Brandon MB   Xu Haiqing H   Kong Xue-Jun XJ  

Frontiers in neuroscience 20240125


Autism spectrum disorder (ASD) is a complex neurodevelopmental condition characterized by diverse clinical features. EEG biomarkers such as spectral power and functional connectivity have emerged as potential tools for enhancing early diagnosis and understanding of the neural processes underlying ASD. However, existing studies yield conflicting results, necessitating a comprehensive, data-driven analysis. We conducted a retrospective cross-sectional study involving 246 children with ASD and 42 c  ...[more]

Similar Datasets

| S-EPMC5814015 | biostudies-literature
| S-EPMC5360843 | biostudies-other
2018-05-25 | GSE114870 | GEO
| S-EPMC11652031 | biostudies-literature
2022-02-14 | PXD030065 | Pride
2008-10-18 | E-GEOD-6575 | biostudies-arrayexpress
| S-EPMC6208010 | biostudies-other
| S-EPMC5360851 | biostudies-other
2008-06-26 | GSE6575 | GEO
| S-EPMC7520686 | biostudies-literature