Project description:Mg, Ca, and Ba catalysts supported on structured mesoporous silica oxides types MCM-41 and Al-SBA-15 were synthesized and investigated in sulfone cracking for sulfur removal from oxidized diesel fuel. Functional materials and catalysts were characterized by low-temperature nitrogen adsorption/desorption, transmission electron microscopy, and inductively coupled plasma atomic emission spectroscopy techniques. Catalytic tests were carried out in fixed-bed and batch reactors with a model compound dibenzothiophene sulfone and oxidized diesel fraction as a feed. MgO/MCM-41 and MgO/Al-MCM-41 possess high activity in sulfone cracking. The sulfur content in the diesel fraction decreases from initial 450 up to 100 ppmw. Catalysts can be regenerated for reuse in several cycles and may be potentially scaled up for industrial applications.
Project description:The potential use of fly ash (FA) originating from lignite combustion at the Belchatow Power Plant (Poland) as filler for rubber mixes was evaluated. Samples of fly ash collected from heaps created in different years were compared according to their chemical and phase composition, particle size distribution, and morphology. The sieve fractionation of fly ash results in size fractions of different chemical structures, phase compositions, and morphologies, reflected in changes to their specific surface area, surface energy, and activity in rubber mixes. Fractionation turned out to be more effective than grinding from the point of view of using ash as a filler for rubber mixes, because it results in higher specific surface area (SSA) and chemical composition differentiation. Carbon black can be replaced by up to 40% by weight with the fly ash fraction (FFA) of dimensions below 125 µm, without any significant deterioration in the mechanical properties of styrene butadiene rubber (SBR) vulcanizates filled with 50 phr of active carbon black (N 220). Despite the larger fly ash fraction of grain dimensions in the range between 125 and 250 µm presenting the highest specific surface area, the particle size adversely affects its strengthening effect in rubber. Taking into account all the tests performed, ranging from morphology, Payne effect and bound rubber, to mechanical and abrasion tests, the highest potential effectivity is presented by a sample containing 30 phr of N 220 and 20 phr of FFA of grain sizes from 63 to 125 µm. The obtained results indicate that fractionation seems to be an effective physical method of fly ash valorization.
Project description:The possibility of crystallizing silicalite-1 (MFI) from the pore walls of as-synthesized MCM-41 via steam-assisted crystallization (SAC) was thoroughly investigated. A kinetic study was conducted through the impregnation of as-synthesized MCM-41 with the structure-directing agent tetrapropyl-ammonium hydroxide (TPAOH). Materials obtained after different SAC treatment times (1-288 h) were characterized by XRD, nitrogen physisorption at 77 K, TGA/DTA, and SEM. The achieved results allowed us to conclude that during SAC treatment, rapid destruction of the hexagonal mesophase occurs with the enlargement of mesopores, probably by their coalescence, until achieving non-porous amorphous silica. Only thereafter is the crystallization of the MFI phase evidenced through the development of micron-sized (>10 µm) MFI structured crystals. This study suggests the probable practical impossibility of even partial crystallization of the pore walls of mesoporous materials by SAC.
Project description:Highly ordered aluminum-containing mesoporous silica (Al-MCM-41) was prepared using attapulgite clay mineral as a Si and Al source. Mesoporous complexes embedded with CuO nanoparticles were subsequently prepared using various copper sources and different copper loadings in a direct synthetic route. The resulting CuO/Al-MCM-41 composite possessed p6mm hexagonally symmetry, well-developed mesoporosity, and relatively high BET surface area. In comparison to pure silica, these mesoporous materials embedded with CuO nanoparticles exhibited smaller pore diameter, thicker pore wall, and enhanced thermal stability. Long-range order in the aforementioned samples was observed for copper weight percentages as high as 30%. Furthermore, a significant blue shift of the absorption edge for the samples was observed when compared with that of bulk CuO. H2-TPR measurements showed that the direct-synthesized CuO/Al-MCM-41 exhibited remarkable redox properties compared to the post-synthesized samples, and most of the CuO nanoparticles were encapsulated within the mesoporous structures. The possible interaction between CuO and Al-MCM-41 was also investigated.
Project description:Mesoporous silica has received much attention due to its well-defined structural order, high surface area, and tunable pore diameter. To successfully employ mesoporous silica for nanotechnology applications it is important to consider how it is influenced by solvent molecules due to the fact that most preparation procedures involve treatment in various solvents. In the present work we contribute to this important topic with new results on how MCM-41 is affected by a simple treatment in alcohol at room temperature. The effects of alcohol treatment are characterized by TGA, FTIR, and sorption calorimetry. The results are clear and show that treatment of MCM-41 in methanol, ethanol, propanol, butanol, pentanol, or octanol at room temperature introduces alkoxy groups that are covalently bound to the silica surface. It is shown that alcohol treated MCM-41 becomes more hydrophobic and that this effect is sequentially more prominent going from methanol to octanol. Chemical formation of alkoxy groups onto MCM-41 occurs both for calcined and hydroxylated MCM-41 and the alkoxy groups are hydrolytically unstable and can be replaced by silanol groups after exposure to water. The results are highly relevant for mesoporous silica applications that involve contact or treatment in protic solvents, which is very common.
Project description:The use of biomass for the production of energy and higher added value products is a topic of increasing interest in line with growing environmental concerns and circular economy. Mesoporous material Sn-In-MCM-41 was synthesized for the first time and used as a catalyst for the transformation of sugars to methyl lactate (ML). This catalyst was characterized in depth by various techniques and compared with Sn-MCM-41 and In-MCM-41 catalysts. In the new Sn-In-MCM-41 material, both metals, homogeneously distributed throughout the mesoporous structure of MCM-41, actuate in a cooperative way in the different steps of the reaction mechanism. As a result, yields to ML of 69.4 and 73.9% in the transformation of glucose and sucrose were respectively reached. In the case of glucose, the ML yield 1.5 and 2.6 times higher than those of Sn-MCM-41 and In-MCM-41 catalysts, respectively. The Sn-In-MCM-41 catalyst was reused in the transformation of glucose up to four cycles without significant loss of catalytic activity. Finally, life cycle assessment comparison between chemical and biochemical routes to produce ML allowed us to conclude that the use of Sn-In-MCM-41 reduces the environmental impacts compared to Sn-MCM-41. Nevertheless, to make the chemical route comparable to the biochemical one, improvements in the catalyst and ML synthesis have to be achieved.
Project description:The production of conjugated C4-C5 dienes from biomass can enable the sustainable synthesis of many important polymers and liquid fuels. Here, we report the first example of bimetallic (Nb, Al)-atomically doped mesoporous silica, denoted as AlNb-MCM-41, which affords quantitative conversion of 2-methyltetrahydrofuran (2-MTHF) to pentadienes with a high selectivity of 91 %. The incorporation of AlIII and NbV sites into the framework of AlNb-MCM-41 has effectively tuned the nature and distribution of Lewis and Brønsted acid sites within the structure. Operando X-ray absorption, diffuse reflectance infrared and solid-state NMR spectroscopy collectively reveal the molecular mechanism of the conversion of adsorbed 2-MTHF over AlNb-MCM-41. Specifically, the atomically-dispersed NbV sites play an important role in binding 2-MTHF to drive the conversion. Overall, this study highlights the potential of hetero-atomic mesoporous solids for the manufacture of renewable materials.
Project description:Electrospinning has been demonstrated as a very promising method to create bipolar membranes (BPMs), especially as it allows three-dimensional (3D) junctions of entangled anion exchange and cation exchange nanofibers. These newly developed BPMs are relevant to demanding applications, including acid and base production, fuel cells, flow batteries, ammonia removal, concentration of carbon dioxide, and hydrogen generation. However, these applications require the introduction of catalysts into the BPM to allow accelerated water dissociation, and this remains a challenge. Here, we demonstrate a versatile strategy to produce very efficient BPMs through a combined electrospinning-electrospraying approach. Moreover, this work applies the newly investigated water dissociation catalyst of nanostructured silica MCM-41. Several BPMs were produced by electrospraying MCM-41 nanoparticles into the layers directly adjacent to the main BPM 3D junction. BPMs with various loadings of MCM-41 nanoparticles and BPMs with different catalyst positions relative to the junction were investigated. The membranes were carefully characterized for their structure and performance. Interestingly, the water dissociation performance of BPMs showed a clear optimal MCM-41 loading where the performance outpaced that of a commercial BPM, recording a transmembrane voltage of approximately 1.11 V at 1000 A/m2. Such an excellent performance is very relevant to fuel cell and flow battery applications, but our results also shed light on the exact function of the catalyst in this mode of operation. Overall, we demonstrate clearly that introducing a novel BPM architecture through a novel hybrid electrospinning-electrospraying method allows the uptake of promising new catalysts (i.e., MCM-41) and the production of very relevant BPMs.
Project description:Ce-modified mesoporous silica materials MCM-41 and SBA-15, namely 32 wt % Ce-Si-MCM-41, 16 wt % Ce-H-MCM-41 and 20 wt % Ce-Si-SBA-15, were prepared, characterized and studied in the selective preparation of trans-carveol by α-pinene oxide isomerization. The characterizations of these catalysts were performed using scanning electron microscopy, X-ray photoelectron spectroscopy, nitrogen adsorption and FTIR pyridine adsorption. Selective preparation of trans-carveol was carried out in the liquid phase in a batch reactor. The activity and the selectivity of catalyst were observed to be influenced by their acidity, basicity and morphology of the mesoporous materials. The formation of trans-carveol is moreover strongly influenced by the basicity of the used solvent and in order to achieve high yields of this desired alcohol it is necessary to use polar basic solvent.
Project description:Antibiotics are emerging pollutants and increasingly present in aquaculture and industrial wastewater. Due to their impact on the environment and health, their removal has recently become a significant concern. In this investigation, we synthesized nano zero-valent iron-loaded magnetic mesoporous silica (Fe-MCM-41-A) via precipitation and applied the adsorption of oxytetracycline (OTC) from an aqueous solution. The effects of competing ions such as Na+, Ca2+ and Cu2+ on the adsorption process under different pH conditions were studied in depth to providing a theoretical basis for the application of nanomaterials. The characterization of the obtained material through transmission electron microscopy demonstrates that the adsorbent possesses hexagonal channels, which facilitate mass transfer during adsorption. The loaded zero-valent iron made the magnetic, and was thus separated under an applied magnetic field. The adsorption of OTC onto Fe-MCM-41-A is rapid and obeys the pseudo-second-order kinetic model, and the maximum adsorption capacity of OTC is 625.90 mg g-1. The reaction between OTC and Fe-MCM-41-A was inner complexation and was less affected by the Na+. The effect of Ca2+ on the adsorption was small under acidic and neutral conditions. However, the promotion effect of Ca2+ increased by the increase of pH. Cu2+ decreased the removal efficiencies continuously and the inhibitory effects decrease varied with the increase of pH. We propose that surface complexing, ion-exchange, cationic π-bonding, hydrogen bonding, and hydrophobicity are responsible for the adsorption of OTC onto Fe-MCM-41-A.