Unknown

Dataset Information

0

Polybenzoxazine-Based Nitrogen-Containing Porous Carbon and Their Composites with NiCo Bimetallic Oxides for Supercapacitor Applications.


ABSTRACT: Supercapacitors (SCs) are considered as emerging energy storage devices that bridge the gap between electrolytic capacitors and rechargeable batteries. However, due to their low energy density, their real-time usage is restricted. Hence, to enhance the energy density of SCs, we prepared hetero-atom-doped carbon along with bimetallic oxides at different calcination temperatures, viz., HC/NiCo@600, HC/NiCo@700, HC/NiCo@800 and HC/NiCo@900. The material produced at 800 °C (HC/NiCo@800) exhibits a hierarchical 3D flower-like morphology. The electrochemical measurement of the prepared materials was performed in a three-electrode system showing an enhanced specific capacitance for HC/NiCo@600 (Cs = 1515 F g-1) in 1 M KOH, at a current density of 1 A g-1, among others. An asymmetric SC device was also fabricated using HC/NiCo@800 as anode and HC as cathode (HC/NiCo@600//HC). The fabricated device had the ability to operate at a high voltage window (~1.6 V), exhibiting a specific capacitance of 142 F g-1 at a current density of 1 A g-1; power density of 743.11 W kg-1 and energy density of 49.93 Wh kg-1. Altogether, a simple strategy of hetero-atom doping and bimetallic inclusion into the carbon framework enhances the energy density of SCs.

SUBMITTER: Periyasamy T 

PROVIDER: S-EPMC10857209 | biostudies-literature | 2024 Feb

REPOSITORIES: biostudies-literature

altmetric image

Publications

Polybenzoxazine-Based Nitrogen-Containing Porous Carbon and Their Composites with NiCo Bimetallic Oxides for Supercapacitor Applications.

Periyasamy Thirukumaran T   Asrafali Shakila Parveen SP   Kim Seong-Cheol SC   Kumar Deivasigamani Ranjith DR   Lee Jaewoong J  

Polymers 20240203 3


Supercapacitors (SCs) are considered as emerging energy storage devices that bridge the gap between electrolytic capacitors and rechargeable batteries. However, due to their low energy density, their real-time usage is restricted. Hence, to enhance the energy density of SCs, we prepared hetero-atom-doped carbon along with bimetallic oxides at different calcination temperatures, viz., HC/NiCo@600, HC/NiCo@700, HC/NiCo@800 and HC/NiCo@900. The material produced at 800 °C (HC/NiCo@800) exhibits a h  ...[more]

Similar Datasets

| S-EPMC9059576 | biostudies-literature
| S-EPMC10918682 | biostudies-literature
| S-EPMC10051936 | biostudies-literature
| S-EPMC11357066 | biostudies-literature
| S-EPMC5968012 | biostudies-literature
| S-EPMC8875902 | biostudies-literature
| S-EPMC10180139 | biostudies-literature
| S-EPMC9059483 | biostudies-literature
| S-EPMC10536687 | biostudies-literature
| S-EPMC9739855 | biostudies-literature