Unknown

Dataset Information

0

Unraveling the pH-Dependent Oxygen Reduction Performance on Single-Atom Catalysts: From Single- to Dual-Sabatier Optima.


ABSTRACT: Metal-nitrogen-carbon (M-N-C) single-atom catalysts (SACs) have emerged as a potential substitute for the costly platinum-group catalysts in oxygen reduction reaction (ORR). However, several critical aspects of M-N-C SACs in ORR remain poorly understood, including their pH-dependent activity, selectivity for 2- or 4-electron transfer pathways, and the identification of the rate-determining steps. Herein, by analyzing >100 M-N-C structures and >2000 sets of energetics, we unveil a pH-dependent evolution in ORR activity volcanos─from a single peak in alkaline media to a double peak in acids. We found that this pH-dependent behavior in M-N-C catalysts fundamentally stems from their moderate dipole moments and polarizability for O* and HOO* adsorbates, as well as unique scaling relations among ORR adsorbates. To validate our theoretical discovery, we synthesized a series of molecular M-N-C catalysts, each characterized by well-defined atomic coordination environments. Impressively, the experiments matched our theoretical predictions on kinetic current, Tafel slope, and turnover frequency in both acidic and alkaline environments. These new insights also refine the famous Sabatier principle by emphasizing the need to avoid an "acid trap" while designing M-N-C catalysts for ORR or any other pH-dependent electrochemical applications.

SUBMITTER: Zhang D 

PROVIDER: S-EPMC10859957 | biostudies-literature | 2024 Feb

REPOSITORIES: biostudies-literature

altmetric image

Publications

Unraveling the pH-Dependent Oxygen Reduction Performance on Single-Atom Catalysts: From Single- to Dual-Sabatier Optima.

Zhang Di D   Wang Zhuyu Z   Liu Fangzhou F   Yi Peiyun P   Peng Linfa L   Chen Yuan Y   Wei Li L   Li Hao H  

Journal of the American Chemical Society 20240112 5


Metal-nitrogen-carbon (M-N-C) single-atom catalysts (SACs) have emerged as a potential substitute for the costly platinum-group catalysts in oxygen reduction reaction (ORR). However, several critical aspects of M-N-C SACs in ORR remain poorly understood, including their pH-dependent activity, selectivity for 2- or 4-electron transfer pathways, and the identification of the rate-determining steps. Herein, by analyzing >100 M-N-C structures and >2000 sets of energetics, we unveil a pH-dependent ev  ...[more]

Similar Datasets

| S-EPMC7556117 | biostudies-literature
| S-EPMC9671664 | biostudies-literature
| S-EPMC7770947 | biostudies-literature
| S-EPMC10633877 | biostudies-literature
| S-EPMC11686109 | biostudies-literature
| S-EPMC6042067 | biostudies-literature
| S-EPMC9018836 | biostudies-literature
| S-EPMC11485142 | biostudies-literature
| S-EPMC10685438 | biostudies-literature
| S-EPMC11848820 | biostudies-literature