Project description:In the field of medical instruments, additive manufacturing allows for a drastic reduction in the number of components while improving the functionalities of the final design. In addition, modifications for users' needs or specific procedures become possible by enabling the production of single customized items. In this work, we present the design of a new fully 3D-printed handheld steerable instrument for laparoscopic surgery, which was mechanically actuated using cables. The pistol-grip handle is based on ergonomic principles and allows for single-hand control of both grasping and omnidirectional steering, while compliant joints and snap-fit connectors enable fast assembly and minimal part count. Additive manufacturing allows for personalization of the handle to each surgeon's needs by adjusting specific dimensions in the CAD model, which increases the user's comfort during surgery. Testing showed that the forces on the instrument handle required for steering and grasping were below 15 N, while the grasping force efficiency was calculated to be 10-30%. The instrument combines the advantages of additive manufacturing with regard to personalization and simplified assembly, illustrating a new approach to the design of advanced surgical instruments where the customization for a single procedure or user's need is a central aspect.
Project description:Background: Minimally invasive sacroiliac joint (SIJ) fusion (SIJF) has become an increasingly accepted surgical option for chronic SI joint dysfunction, a prevalent cause of chronic low back/buttock pain. Objective: To report clinical and functional outcomes of SIJF using 3D-printed triangular titanium implants (TTI) for patients with chronic SI joint dysfunction. Methods: A total of 28 subjects with SIJ dysfunction at 8 centers underwent SIJF with 3D TTI and had scheduled follow-up to 6 months (NCT03122899). Results: Mean preoperative SIJ pain score was 79.1 and mean preoperative Oswestry Disability Index (ODI) was 49.9. At 6 months, pain scores decreased by 51 points and ODI decreased by 23.6 points (both p<0.0001). The proportion of subjects able to perform various back/pelvis-related physical functions with minimal difficulty improved significantly for nearly all activities. Opioid use decreased and physical function, as assessed with three objective tests, improved. Conclusion: Early results from this prospective multicenter trial confirm that clinical responses to a 3D triangular titanium implant for SIJF are similar to those from prior trials, with improved physical function and decreased opioid use. Level of evidence: Level II.
Project description:The power of three-dimensional printing in designing personalized scaffolds with precise dimensions and properties is well-known. However, minimally invasive implantation of complex scaffolds is still challenging. Here, we develop amphiphilic dynamic thermoset polyurethanes catering for multi-material four-dimensional printing to fabricate supportive scaffolds with body temperature-triggered shape memory and water-triggered programmable deformation. Shape memory effect enables the two-dimensional printed pattern to be fixed into temporary one-dimensional shape, facilitating transcatheter delivery. Upon implantation, the body temperature triggers shape recovery of the one-dimensional shape to its original two-dimensional pattern. After swelling, the hydrated pattern undergoes programmable morphing into the desired three-dimensional structure because of swelling mismatch. The structure exhibits unusual soft-to-stiff transition due to the water-driven microphase separation formed between hydrophilic and hydrophobic chain segments. The integration of shape memory, programmable deformability, and swelling-stiffening properties makes the developed dynamic thermoset polyurethanes promising supportive void-filling scaffold materials for minimally invasive implantation.
Project description:In laparoscopy, a small incision size improves the surgical outcome but increases at the same time the rigidity of the instrument, with consequent impairment of the surgeon's maneuverability. Such reduction introduces new challenges, such as the loss of wrist articulation or the impossibility of overcoming obstacles. A possible approach is using multi-steerable cable-driven instruments fully mechanical actuated, which allow great maneuverability while keeping the wound small. In this work, we compared the usability of the two most promising cable configurations in 3D printed multi-steerable instruments: a parallel configuration with all cables running straight from the steerable shaft to the handle; and a multi configuration with straight cables in combination with helical cables. Twelve participants were divided into two groups and asked to orient the instrument shaft and randomly hit six targets following the instructions in a laparoscopic simulator. Each participant carried out four trials (two trials for each instrument) with 12 runs per trial. The average task performance time showed a significant decrease over the first trial for both configurations. The decrease was 48% for the parallel and 41% for the multi configuration. Improvement of task performance times reached a plateau in the second trial with both instruments. The participants filled out a TLX questionnaire after each trial. The questionnaire showed a lower burden score for the parallel compared to multi configuration (23% VS 30%). Even though the task performance time for both configurations was comparable, a final questionnaire showed that 10 out of 12 participants preferred the parallel configuration due to a more intuitive hand movement and the possibility of individually orienting the distal end of the steerable shaft.
Project description:Minimally invasive surgeries have numerous advantages, yet complications may arise from limited knowledge about the anatomical site targeted for the delivery of therapy. Transcatheter aortic valve replacement (TAVR) is a minimally invasive procedure for treating aortic stenosis. Here, we demonstrate multimaterial three-dimensional printing of patient-specific soft aortic root models with internally integrated electronic sensor arrays that can augment testing for TAVR preprocedural planning. We evaluated the efficacies of the models by comparing their geometric fidelities with postoperative data from patients, as well as their in vitro hemodynamic performances in cases with and without leaflet calcifications. Furthermore, we demonstrated that internal sensor arrays can facilitate the optimization of bioprosthetic valve selections and in vitro placements via mapping of the pressures applied on the critical regions of the aortic anatomies. These models may pave exciting avenues for mitigating the risks of postoperative complications and facilitating the development of next-generation medical devices.
Project description:Durable mechanical circulatory support (MCS) systems are established therapy option in patients with end-stage heart failure, with increasing importance during the last years due to donor organ shortage. Left ventricular assist devices (LVADs) are traditionally implanted through median sternotomy (MS). However, improvement in the pump designs during the last years led to evolvement of new surgical approaches that aim to reduce the invasiveness of the procedure. Numerous reports and studies have shown the viability and possible advantages of less-invasive approach compared to the sternotomy approach. The less invasive implant strategies for LVADs, while vague in definition, are characterized by minimizing surgical trauma and if possible, cardio-pulmonary bypass related complications. Usually it involves minimizing or completely avoiding sternal trauma, avoiding heart luxation while simultaneously leaving the major part of pericardium intact. There is no consensus between the centers regarding the ideal approach for LVAD implantation. Some centers, like our center, perform by default VAD implantation using less invasive approach in almost all patients and some centers use only sternotomy approach. The aim of this review article is to shed light on the currently available less invasive options of LVAD implantation, with particular focus on the centrifugal pumps, and their possible advantages compared to traditional sternotomy approach.
Project description:Picoliter-scale droplets have many applications in chemistry and biology, such as biomolecule synthesis, drug discovery, nucleic acid quantification, and single cell analysis. However, due to the complicated processes used to fabricate microfluidic channels, most picoliter (pL) droplet generation methods are limited to research in laboratories with cleanroom facilities and complex instrumentation. The purpose of this work is to investigate a method that uses 3D printing to fabricate microfluidic devices that can generate droplets with sizes <100 pL and encapsulate single dense beads mechanistically. Our device generated monodisperse droplets as small as ~48 pL and we demonstrated the usefulness of this droplet generation technique in biomolecule analysis by detecting Lactobacillus acidophillus 16s rRNA via digital loop-mediated isothermal amplification (dLAMP). We also designed a mixer that can be integrated into a syringe to overcome dense bead sedimentation and found that the bead-in-droplet (BiD) emulsions created from our device had <2% of the droplets populated with more than 1 bead. This study will enable researchers to create devices that generate pL-scale droplets and encapsulate dense beads with inexpensive and simple instrumentation (3D printer and syringe pump). The rapid prototyping and integration ability of this module with other components or processes can accelerate the development of point-of-care microfluidic devices that use droplet-bead emulsions to analyze biological or chemical samples with high throughput and precision.
Project description:Glaucoma is the leading cause of irreversible blindness with over 70 million people affected worldwide. The surgical management of glaucoma aims to lower intraocular pressure by increasing aqueous outflow facility. The latest manufacturing techniques have allowed for the development of a number of novel implantable devices to improve safety and outcomes of glaucoma surgery. These are collectively referred to as minimally invasive glaucoma surgery (MIGS) devices and are among the smallest devices implanted in the human body. This review discusses the design criterion and constraints as well as the user requirements for MIGS devices. We review how recent devices have attempted to meet these challenges and give our opinion as to the necessary characteristics for the development of future devices.
Project description:Recent advances in the preparation, control and measurement of atomic gases have led to new insights into the quantum world and unprecedented metrological sensitivities, e.g. in measuring gravitational forces and magnetic fields. The full potential of applying such capabilities to areas as diverse as biomedical imaging, non-invasive underground mapping, and GPS-free navigation can only be realised with the scalable production of efficient, robust and portable devices. We introduce additive manufacturing as a production technique of quantum device components with unrivalled design freedom and rapid prototyping. This provides a step change in efficiency, compactness and facilitates systems integration. As a demonstrator we present an ultrahigh vacuum compatible ultracold atom source dissipating less than ten milliwatts of electrical power during field generation to produce large samples of cold rubidium gases. This disruptive technology opens the door to drastically improved integrated structures, which will further reduce size and assembly complexity in scalable series manufacture of bespoke portable quantum devices.
Project description:Triple-negative breast cancer (TNBC) is traditionally treated with systemic chemotherapy, often resulting in significant off-target toxicity. In this study, we assess the efficacy of intraductal chemotherapeutic delivery, aimed at reducing systemic side effects. Using an in situ TNBC model, created by intraductal injection of 4T1-luc cells, we identified day 3 post-tumor implantation as an optimal early intervention point. Echocardiographic analysis confirmed that intraductal administration of eribulin (ERI) or doxorubicin (DOX) did not cause cardiac dysfunction or apoptosis. Our results demonstrate that intraductal delivery of ERI and DOX significantly enhances anti-tumor and anti-metastatic effects. Mechanistically, ERI followed by DOX increased intratumoral perfusion, improved drug concentration, reversed epithelial-mesenchymal transition, and inhibited tumor cell invasion and metastasis. Additionally, this approach triggered immunogenic cell death and activated a systemic anti-tumor immune response. These findings underscore the potential of intraductal chemotherapy as a safe, highly effective approach, offering a preclinical foundation for minimally invasive TNBC therapies.