Project description:DNA mismatch repair (MMR) is essential in the surveillance of accurate transmission of genetic information, and defects in this pathway lead to microsatellite instability and hereditary nonpolyposis colorectal cancer (HNPCC). Our previous study raised the possibility that hMRE11 might be involved in MMR through physical interaction with hMLH1. Here, we show that hMRE11 deficiency leads to significant increase in MSI for both mono- and dinucleotide sequences. Furthermore, RNA-interference-mediated hMRE11-knockdown in HeLa cells results in MMR deficiency. Analysis of seven HNPCC-associated hMLH1 missense mutations located within the hMRE11-interacting domain shows that four mutations (L574P, K618T, R659P and A681T) cause near-complete disruption of the interaction between hMRE11 and hMLH1, and two mutations (Q542L and L582V) cause a 30% reduction of protein interaction. These findings indicate that hMRE11 represents a functional component of the MMR pathway and the disruption of hMLH1-hMRE11 interaction could be an alternative molecular explanation for hMLH1 mutations in a subset of HNPCC tumours.
Project description:BackgroundMicrosatellite instability (MSI) is a type of genomic instability caused by mismatch repair deficiency (dMMR) in tumors. Studies on dMMR/MSI are limited, and the relationship between dMMR and MSI is unknown in tumors of dogs.ObjectivesWe aimed to identify the frequency of dMMR/MSI by tumor type and evaluate the relationship between dMMR and MSI in tumors of dogs.AnimalsIn total, 101 dogs with 11 types of malignant tumors were included.MethodsWe extracted DNA from fresh normal and tumor tissues. Twelve microsatellite loci from both normal and tumor DNA were amplified by PCR and detected by capillary electrophoresis. Each microsatellite (MS) was defined as MSI if a difference in product size between the tumor and normal DNA was detected. The dMMR was evaluated by immunohistochemistry with formalin-fixed paraffin-embedded tumor tissues. Next, we confirmed whether dMMR induces MSI by serial passaging of MMR gene knockout cell lines for 3 months.ResultsMicrosatellite instability was detected frequently in oral malignant melanoma. The number of MSI-positive markers was higher in cases with dMMR than in those with proficient MMR (P < .0001). Statistical analysis indicated that the occurrence of MSI in FH2305 might have relevance to dMMR. Furthermore, MSI occurred in dMMR cell lines 3 months after passaging.Conclusions and clinical importanceMicrosatellite instability and dMMR more frequently were found in oral malignant melanoma than in other tumors, and dMMR has relevance to MSI in both clinical cases and cell lines.
Project description:Microsatellite instability (MSI) is a tumor phenotype related to a deficient DNA mismatch repair system (dMMR). This phenotype, observed in 5% of metastatic mCRC but 10-18% of localized CRC, is associated with high tumor mutational burden with highly immunogenic neoantigens. It has emerged as a major predictive biomarker for the efficacy of ICIs. In this review, we will present a comprehensive overview of the literature concerning the efficacy of ICIs in MSI/dMMR mCRC, with a focus on new developments in first-line metastatic setting. Then, we will present current and future challenges of immuno-oncology for patients with MSI/dMMR metastatic CRC.
Project description:BackgroundMismatch-repair (MMR)/microsatellite instability (MSI) status has therapeutic implications in endometrial cancer (EC). The authors evaluated the concordance of testing and factors contributing to MMR expression heterogeneity.MethodsSix hundred sixty-six ECs were characterized using immunohistochemistry (IHC), MSI testing, and mut-L homolog 1 (MLH1) methylation. Select samples underwent whole-transcriptome analysis and next-generation sequencing. MMR expression of metastatic/recurrent sites was evaluated.ResultsMSI testing identified 27.3% of cases as MSI-high (n = 182), MMR IHC identified 25.1% cases as MMR-deficient (n = 167), and 3.8% of cases (n = 25) demonstrated discordant results. A review of IHC staining explained discordant results in 18 cases, revealing subclonal loss of MLH1/Pms 1 homolog 2 (PMS2) (n = 10) and heterogeneous MMR IHC (mut-S homolog 6 [MSH6], n = 7; MLH1/PMS2, n = 1). MSH6-associated Lynch syndrome was diagnosed in three of six cases with heterogeneous expression. Subclonal or heterogeneous cases had a 38.9% recurrence rate (compared with 16.7% in complete MMR-deficient cases and 9% in MMR-proficient cases) and had abnormal MMR IHC results in all metastatic recurrent sites (n = 7). Tumors with subclonal MLH1/PMS2 demonstrated 74 differentially expressed genes (determined using digital spatial transcriptomics) when stratified by MLH1 expression, including many associated with epithelial-mesenchymal transition.ConclusionsSubclonal/heterogeneous MMR IHC cases showed epigenetic loss in 66.7%, germline mutations in 16.7%, and somatic mutations in 16.7%. MMR IHC reported as intact/deficient missed 21% of cases of Lynch syndrome. EC with subclonal/heterogeneous MMR expression demonstrated a high recurrence rate, and metastatic/recurrent sites were MMR-deficient. Transcriptional analysis indicated an increased risk for migration/metastasis, suggesting that clonal MMR deficiency may be a driver for tumor aggressiveness. Reporting MMR IHC only as intact/deficient, without reporting subclonal and heterogeneous staining, misses opportunities for biomarker-directed therapy.Plain language summaryEndometrial cancer is the most common gynecologic cancer, and 20%-40% of tumors have a defect in DNA proofreading known as mismatch-repair (MMR) deficiency. These results can be used to guide therapy. Tests for this defect can yield differing results, revealing heterogeneous (mixed) proofreading capabilities. Tumors with discordant testing results and mixed MMR findings can have germline or somatic defects in MMR genes. Cells with deficient DNA proofreading in tumors with mixed MMR findings have DNA expression profiles linked to more aggressive characteristics and cancer spread. These MMR-deficient cells may drive tumor behavior and the risk of spreading cancer.
Project description:Mismatch repair protein deficiency (MMR-D) and high microsatellite instability (MSI-H) are features of Lynch syndrome-associated colorectal carcinomas and have implications in clinical management. We evaluate the ability of a targeted next-generation sequencing panel to detect MMR-D and MSI-H based on mutational phenotype. Using a criterion of >40 total mutations per megabase or >5 single-base insertion or deletion mutations in repeats per megabase, sequencing achieves 92% sensitivity and 100% specificity for MMR-D by immunohistochemistry in a training cohort of 149 colorectal carcinomas and 91% sensitivity and 98% specificity for MMR-D in a validation cohort of 94 additional colorectal carcinomas. False-negative samples are attributable to tumor heterogeneity, and next-generation sequencing results are concordant with analysis of microsatellite loci by PCR. In a subset of 95 carcinomas with microsatellite analysis, sequencing achieves 100% sensitivity and 99% specificity for MSI-H in the combined training and validation set. False-positive results for MMR-D and MSI-H are attributable to ultramutated cancers with POLE mutations, which are confirmed by direct sequencing of the POLE gene and are detected by mutational signature analysis. These findings provide a framework for a targeted tumor sequencing panel to accurately detect MMR-D and MSI-H in colorectal carcinomas.
Project description:Mutations in mismatch repair genes leading to mismatch repair (MMR) deficiency (dMMR) and microsatellite instability (MSI) have been implicated in multiple types of gynecologic malignancies. Endometrial carcinoma represents the largest group, with approximately 30% of these cancers caused by dMMR/MSI. Thus, testing for dMMR is now routine for endometrial cancer. Somatic mutations leading to dMMR account for approximately 90% of these cancers. However, in 5-10% of cases, MMR protein deficiency is due to a germline mutation in the mismatch repair genes MLH1, MSH2, MSH6, PMS2, or EPCAM. These germline mutations, known as Lynch syndrome, are associated with an increased risk of both endometrial and ovarian cancer, in addition to colorectal, gastric, urinary tract, and brain malignancies. So far, gynecological cancers with dMMR/MSI are not well characterized and markers for detection of MSI in gynecological cancers are not well defined. In addition, currently advanced endometrial cancers have a poor prognosis and are treated without regard to MSI status. Elucidation of the mechanism causing dMMR/MSI gynecological cancers would aid in diagnosis and therapeutic intervention. Recently, a new immunotherapy was approved for the treatment of solid tumors with MSI that have recurred or progressed after failing traditional treatment strategies. In this review, we summarize the MMR defects and MSI observed in gynecological cancers, their prognostic value, and advances in therapeutic strategies to treat these cancers.
Project description:Immunotherapies have led to substantial changes in cancer treatment and have been a persistently popular topic in cancer research because they tremendously improve the efficacy of treatment and survival of individuals with various cancer types. However, only a small proportion of patients are sensitive to immunotherapy, and specific biomarkers are urgently needed to separate responders from nonresponders. Mismatch repair pathways play a vital role in identifying and repairing mismatched bases during DNA replication and genetic recombination in normal and cancer cells. Defects in DNA mismatch repair proteins and subsequent microsatellite instability-high lead to the accumulation of mutation loads in cancer-related genes and the generation of neoantigens, which stimulate the anti-tumor immune response of the host. Mismatch repair deficiency/microsatellite instability-high represents a good prognosis in early colorectal cancer settings without adjuvant treatment and a poor prognosis in patients with metastasis. Several clinical trials have demonstrated that mismatch repair deficiency or microsatellite instability-high is significantly associated with long-term immunotherapy-related responses and better prognosis in colorectal and noncolorectal malignancies treated with immune checkpoint inhibitors. To date, the anti-programmed cell death-1 inhibitor pembrolizumab has been approved for mismatch repair deficiency/microsatellite instability-high refractory or metastatic solid tumors, and nivolumab has been approved for colorectal cancer patients with mismatch repair deficiency/microsatellite instability-high. This is the first time in the history of cancer therapy that the same biomarker has been used to guide immune therapy regardless of tumor type. This review summarizes the features of mismatch repair deficiency/microsatellite instability-high, its relationship with programmed death-ligand 1/programmed cell death-1, and the recent advances in predicting immunotherapy efficacy.
Project description:PurposeTo investigate the status of mismatch repair (MMR) and microsatellite instability (MSI) in triple-negative breast cancer (TNBC) and to examine correlations between MMR/MSI status and clinicopathological parameters.MethodsWe retrospectively collected tissue samples from 440 patients with TNBC and constructed tissue microarrays. Protein expression of MLH1, MSH2, MSH6, and PMS2 was detected by immunohistochemistry (IHC). We also analyzed 195 patient samples using MSI polymerase chain reaction (PCR) testing. Correlations between MSI status and clinicopathological parameters and prognosis were analyzed.ResultsThe median age of the cohort was 49 years (range: 24-90 years) with a median follow-up period of 68 months (range: 1-170 months). All samples were positive for MLH1, MSH2, MSH6, and PMS2, except for one sample identified as MMR-deficient (dMMR) by IHC, with loss of MSH2 and intact MSH6 expression. MSI PCR revealed no case with high-frequency MSI (MSI-H), whereas 14 (7.2%) and 181 (92.8%) samples demonstrated low-frequency and absence of MSI events, respectively. The dMMR sample harbored low-frequency instability, as revealed by MSI PCR, and a possible EPCAM deletion in the tumor, as observed from next-generation sequencing. No correlations were detected between MMR or MSI status and clinicopathological parameters, programmed cell death 1 (PD-1)/programmed cell death ligand 1 (PD-L1) expression, or survival.ConclusionsThe incidence of dMMR/MSI-H is extremely low in TNBC, and rare discordant MSI PCR/MMR IHC results may be encountered. Moreover, MMR/MSI status may be of limited prognostic value. Further studies are warranted to explore other predictive immunotherapy biomarkers for TNBC.
Project description:Testing to detect mismatch repair deficiency (dMMR) and high-grade microsatellite instability (MSI-H) has become an integral part of the routine diagnostic workup for colorectal cancer (CRC). While MSI was initially considered to be a possible indicator of a hereditary disposition to cancer (Lynch syndrome, LS), today the prediction of the therapy response to immune checkpoint inhibitors (ICI) is in the foreground. Corresponding recommendations and testing algorithms are available for use in primary diagnosis (reviewed in: Rüschoff et al. 2021).Given the increasing importance for routine use and the expanding indication spectrum of ICI therapies for non-CRCs, such as endometrial, small intestinal, gastric, and biliary tract cancers, an updated review of dMMR/MSI testing is presented. The focus is on the challenges in the assessment of immunohistochemical stains and the value of PCR-based procedures, considering the expanded ICI indication spectrum. A practice-oriented flowchart for everyday diagnostic decision-making is provided that considers new data on the frequency and type of discordances between MMR-IHC and MSI-PCR findings, and the possible role of Next Generation Sequencing in clarifying them. Reference is made to the significance of systematic quality assurance measures (e.g., QuIP MSI portal and multicenter proficiency testing), including regular continued training and education.
Project description:Microsatellite instability (MSI) has been identified in various human cancers, particularly those associated with the hereditary nonpolyposis colorectal cancer syndrome. Although gliomas have been reported in a few hereditary nonpolyposis colorectal cancer syndrome kindred, data on the incidence of MSI in gliomas are conflicting, and the nature of the mismatch repair (MMR) defect is not known. We established the incidence of MSI and the underlying MMR gene mutation in 22 patients ages 45 years or less with sporadic high-grade gliomas (17 glioblastomas, 3 anaplastic astrocytomas, and 2 mixed gliomas, grade III). Using five microsatellite loci, four patients (18%) had high level MSI, with at least 40% unstable loci. Germline MMR gene mutation was detected in all four patients, with inactivation of the second allele of the corresponding MMR gene or loss of protein expression in the tumor tissue. Frameshift mutation in the mononucleotide tract of insulin-like growth factor type II receptor was found in one high-level MSI glioma, but none was found in the transforming growth factor beta type II receptor and the Bax genes. There was no family history of cancer in three of the patients, and although one patient did have a family history of colorectal carcinoma, the case did not satisfy the Amsterdam criteria for hereditary nonpolyposis colorectal cancer syndrome. Three patients developed metachronous colorectal adenocarcinomas, fitting the criteria of Turcot's syndrome. Thus, MSI and germline MMR gene mutation is present in a subset of young glioma patients, and these patients and their family members are at risk of developing other hereditary nonpolyposis colorectal cancer syndrome-related tumors, in particular colorectal carcinomas. These results have important implications in the genetic testing and management of young patients with glioma and their families.