Project description:BackgroundPsoriasis is an inflammatory skin disease. The correlation between intestinal microbiota and immune-mediated diseases makes scientists pay attention to the pathogenic role of microbiota.ObjectiveThe aim of this study was to identify the gut microbial composition of patients with psoriasis.Methods16S rRNA gene sequencing method was used to analyse the faecal samples which was collected from 28 moderately severe psoriasis patients and 21 healthy controls and was followed by the analysing of informatics methods.ResultsNo visible differences can be observed in the diversity of gut microbiota between the psoriasis and the healthy patients, but the composition of the gut microbiota illustrate significant distinction between these two groups. At the phylum level, compared to the healthy control group, the psoriasis group shows higher relative abundance of Bacteroidetes and lower relative abundance of Proteobacteria (P < 0.05). At the genus level, unidentified_Enterobacteriaceae, unidentified_Lachnospiraceae, Romboutsia, Subdoligranulum, unidentified_Erysipelotrichaceae, Dorea were relatively less abundant in psoriasis patients, whereas Lactobacillus, Dialister were relatively more abundant in psoriasis group (all P < 0.05). LefSe analysis (linear discriminant analysis effect size) indicated that Negativicutes and Bacteroidia were potential biomarkers for psoriasis.ConclusionThis study identified the intestinal microecological environment of patients with psoriasis and healthy people, proving that psoriasis patients have a remarkably disturbed microbiome, and found several biomarkers of intestinal microorganisms in patients with psoriasis.
Project description:Hirschsprung-associated enterocolitis (HAEC) stands as most common and serious complication of Hirschsprung's disease. Variations in the microbiota composition may account for the differences observed between HAEC and healthy individuals, offering crucial insights into the disease's pathogenesis. Here, we performed a study to changes in the gut microbiome using 16sRNA amplicon sequencing in a cohort of HAEC patients ( n = 16) and healthy controls ( n = 14). Our result revealed a significant disparity in beta diversity between the two groups. Following correction for false discovery rate, a rank-sum test at the genus level indicated a notable decrease in the relative abundance of Bifidobacterium , Lactobacillus , and Veillonella , whereas the Enterococcus genus exhibited a substantial increase in HAEC, a finding further supported by additional linear discriminant analysis effect size analysis. Functional analysis showed that putative transport and catabolism, digestive system, and metabolism of cofactors and vitamins were proved to be some abundant KOs (Kyoto Encyclopedia of Genes and Genomes [KEGG] orthologs) in healthy group, whereas infectious disease, membrane transport, and carbohydrate metabolism were the three KOs with the higher abundance in the HAEC group. Our data increased our insight into the HAEC, which may shed further light on HAEC pathogenesis. Our study firstly demonstrated the difference between fecal microbiota of HAEC patients and healthy individuals, which made a step forward in the understanding of the pathophysiology of HAEC.
Project description:BackgroundInfants born prematurely, particularly extremely low birth weight infants (ELBW) have altered gut microbial communities. Factors such as maternal health, gut immaturity, delivery mode, and antibiotic treatments are associated with microbiota disturbances, and are linked to an increased risk of certain diseases such as necrotising enterocolitis. Therefore, there is a requirement to optimally characterise microbial profiles in this at-risk cohort, via standardisation of methods, particularly for studying the influence of microbiota therapies (e.g. probiotic supplementation) on community profiles and health outcomes. Profiling of faecal samples using the 16S rRNA gene is a cost-efficient method for large-scale clinical studies to gain insights into the gut microbiota and additionally allows characterisation of cohorts were sample quantities are compromised (e.g. ELBW infants). However, DNA extraction method, and the 16S rRNA region targeted can significantly change bacterial community profiles obtained, and so confound comparisons between studies. Thus, we sought to optimise a 16S rRNA profiling protocol to allow standardisation for studying ELBW infant faecal samples, with or without probiotic supplementation.MethodsUsing ELBW faecal samples, we compared three different DNA extraction methods, and subsequently PCR amplified and sequenced three hypervariable regions of the 16S rRNA gene (V1 + V2 + V3), (V4 + V5) and (V6 + V7 + V8), and compared two bioinformatics approaches to analyse results (OTU and paired end). Paired shotgun metagenomics was used as a 'gold-standard'.ResultsResults indicated a longer bead-beating step was required for optimal bacterial DNA extraction and that sequencing regions (V1 + V2 + V3) and (V6 + V7 + V8) provided the most representative taxonomic profiles, which was confirmed via shotgun analysis. Samples sequenced using the (V4 + V5) region were found to be underrepresented in specific taxa including Bifidobacterium, and had altered diversity profiles. Both bioinformatics 16S rRNA pipelines used in this study (OTU and paired end) presented similar taxonomic profiles at genus level.ConclusionsWe determined that DNA extraction from ELBW faecal samples, particularly those infants receiving probiotic supplementation, should include a prolonged beat-beating step. Furthermore, use of the 16S rRNA (V1 + V2 + V3) and (V6 + V7 + V8) regions provides reliable representation of ELBW microbiota profiles, while inclusion of the (V4 + V5) region may not be appropriate for studies where Bifidobacterium constitutes a resident microbiota member.
Project description:To explore the effects of gut microbiota of young (8 weeks) or old mice (18~20 months) on stroke, feces of young (Y1-Y9) and old mice (O6-O16) were collected and analyzed by 16s rRNA sequencing. Then stroke model was established on young mouse receive feces from old mouse (DOT1-15) and young mouse receive feces from young mouse (DYT1-15). 16s rRNA sequencing were also performed for those young mice received feces from young and old mice.
Project description:IntroductionAlterations of gut microbiota have been thought to be associated with irritable bowel syndrome (IBS). Many studies have reported significant alterations of gut microbiota in patients with IBS based on 16S ribosomal RNA-targeted sequencing. However, results from these studies are inconsistent or even contradictory. We performed a systematic review to explore the alterations of gut microbiota in patients with IBS compared with healthy controls (HCs).MethodsThe databases PubMed, Cochrane Library, Web of Science, and Embase were searched for studies published until February 28, 2018, for case-control studies detecting gut microbiota in patients with IBS. Methodological quality was assessed using the Newcastle-Ottawa Scale. The α-diversity and alterations of gut microbiota in patients with IBS compared with HCs were analyzed.ResultsSixteen articles involving 777 patients with IBS and 461 HCs were included. Quality assessment scores of the studies ranged from 5 to 7. For most studies, patients with IBS had a lower α-diversity than HCs in both fecal and mucosal samples. Relatively consistent changes in fecal microbiota for patients with IBS included increased Firmicutes, decreased Bacteroidetes, and increased Firmicutes:Bacteroidetes ratio at the phylum level, as well as increased Clostridia and Clostridiales, decreased Bacteroidia and Bacteroidales at lower taxonomic levels. Results for mucosal microbiota were inconsistent.ConclusionsAlterations of gut microbiota exist in patients with IBS and have significant association with the development of IBS. Further studies are needed to draw conclusions about gut microbiota changes in patients with IBS.Translational impactThis knowledge might improve the understanding of microbial signatures in patients with IBS and would guide future therapeutic strategies.
Project description:Nonalcoholic fatty liver disease (NAFLD) is a prevalent and progressive disease spectrum ranging from nonalcoholic fatty liver (NAFL) to nonalcoholic steatohepatitis (NASH), yet there is no effective treatment and efficient noninvasive diagnostic method for NASH. The present study investigated the longitudinal alternations of gut microbiota in the Western diet (WD) induced murine NAFLD model using 16S rRNA sequencing. Evident steatosis and inflammation were detected in the liver at the 8th and 12th week, while prompted hepatic oxidative injury and fibrosis were found at the 16th week. In this progressive process, impaired bile acid (BA) metabolism plays a vital part. Long-term WD intervention alters microbial richness and composition in the intestine, shaping characteristic microbial feature correspondence to each NAFLD stage. Descending abundances of Clostridia and Ruminococcaceae were found in NAFLD progression, while inflammation-related microbes [Eubacterium]_fissicatena_group, Romboutsia, and Erysipelatoclostridium were verified to identify borderline NASH at 8th and 12th week, and BA-associated taxa Dubosiella, Bosea, Helicobacter, and Alistipes were recognized as special symbols reflecting the state of oxidative damage and fibrosis in NASH at 16th week. Further, feces and colon abundances of Akkermansia were verified to be depleted in the process of borderline NASH progressed to NASH, and exhibited substantial correlations with NAFLD indexes ALT, AST, TC, and TBA. These characteristic taxa were effective to identify NAFLD and NASH, and microbiota-derived predictive models for NAFLD and NASH exhibited great potential (AUC 0.983 and 0.784). These findings demonstrate that a core set of gut microbiome especially BA-related taxa may be adopted as a noninvasive diagnostic tool for NAFLD and NASH. IMPORTANCE This study concentrates on longitudinal alternations of gut microbiota in NAFLD progression and discovers the interrelationships between them. These findings may uncover the role of gut microbiota in NAFLD progression and identify novel noninvasive diagnostic tools for NAFLD based on microbial biomarkers.
Project description:ObjectiveAn increasing number of studies that are using high-throughput molecular methods are rapidly extending our knowledge of gut microbial colonization in preterm infants whose immaturity and requirement for extensive treatment may result in altered colonization process. We aimed to describe the profile of gut microbiota in 50 extremely low birth weight (<1200 g) critically ill infants at three different time points during the first two months of life by using 16S rRNA gene specific sequencing. Patients and methodsStool samples were collected at the age of one week, one month and two months. Bacterial community profiling was done using universal amplification of 16S rRNA gene and 454 pyrosequencing.ResultsThe diversity of gut microbiota in preterm neonates in the first week of life was low but increased significantly over two months. The gut microbiota was dominated by facultative anaerobic bacteria (Staphylococcus spp. and Enterobacteriaceae) and lacked colonization with bacteria known to provide resistance against pathogens (Bacteroides, Bifidobacterium, and Lactobacillus) throughout the study. Colonization of Escherichia coli and uncultured Veillionella was positively correlated with maturity. Infants born to mothers with chorioamnionitis had significantly higher bacterial diversity than those without.ConclusionsHigh prevalence and abundance of potentially pathogenic Enterobacteriaceae and Staphylococcaceae with low prevalence and abundance of colonization resistance providing taxa bifidobacteria, Bacteroides and lactobacilli may lead to high infection risk via microbial translocation from the gut. Additionally, our data suggest that maternal chorioamnionitis may have an effect on the diversity of infants' gut microbiota; however, the mechanisms involved remain to be elucidated.
Project description:It is crucial to consider the importance of the microbiome and the gut-lung axis in the context of SARS-CoV-2 infection. This pilot study examined the fecal microbial composition of patients with COVID-19 following a 3-month recovery. Using for the first time metagenomic analysis based on all hypervariable regions (V1-V9) of the 16S rRNA gene, we have identified 561 microbial species; however, 17 were specific only for the COVID-19 group (n = 8). The patients' cohorts revealed significantly greater alpha diversity of the gut microbiota compared to healthy controls (n = 14). This finding has been demonstrated by operational taxonomic units (OTUs) richness (p < 0.001) and Chao1 index (p < 0.01). The abundance of the phylum Verrucomicrobia was 30 times higher in COVID-19 patients compared to healthy subjects. Accordingly, this disproportion was also noted at other taxonomic levels: in the class Verrucomicrobiae, the family Verrucomicrobiaceae, and the genus Akkermansia. Elevated pathobionts such as Escherichia coli, Bilophila wadsworthia, and Parabacteroides distasonis were found in COVID-19 patients. Considering the gut microbiota's ability to disturb the immune response, our findings suggest the importance of the enteric microbiota in the course of SARS-CoV-2 infection. This pilot study shows that the composition of the microbial community may not be fully restored in individuals with SARS-CoV-2 following a 3-month recovery.
Project description:ObjectivesTo investigate the urinary microbiota composition in urolithiasis patients compared to healthy controls and to identify potential microbial markers and their association with clinical parameters.MethodsA total of 66 samples, comprising 45 from urolithiasis patients and 21 from healthy controls, were analyzed. 16S rRNA gene sequencing was employed to determine the microbiota composition. Various statistical and bioinformatics tools, including ANOVA, PCoA, and LEfSe, were utilized to analyze the sequencing data and identify significant differences in microbial abundance.ResultsNo significant demographic differences were observed between the two groups. Post-quality control, clean tags ranged from 60,979 to 68,736. Significant differences in α-diversity were observed between the two groups. β-diversity analysis revealed distinct clustering of the urinary microbiota in urolithiasis patients and controls. Notably, Ruminococcaceae was predominant in urolithiasis samples, while Proteobacteria was more prevalent in healthy samples. Lactobacillus was significantly overrepresented in samples from healthy females.ConclusionThe urinary microbiota composition in urolithiasis patients is distinct from that of healthy controls. Specific microbial taxa, such as Ruminococcaceae and Proteobacteria, could serve as potential biomarkers for urolithiasis. The findings pave the way for further exploration of the role of microbiota in urolithiasis and the development of microbiome-based therapeutic strategies.
Project description:Newborn screening for cystic fibrosis (CF) can identify affected but asymptomatic infants. The selection of omic technique for gut microbiota study is crucial due to both the small amount of feces available and the low microorganism load. Our aims were to compare the agreement between 16S rRNA amplicon sequencing and metaproteomics by a robust statistical analysis, including both presence and abundance of taxa, to describe the sequential establishment of the gut microbiota during the first year of life in a small size sample (8 infants and 28 fecal samples). The taxonomic assignations by the two techniques were similar, whereas certain discrepancies were observed in the abundance detection, mostly the lower predicted relative abundance of Bifidobacterium and the higher predicted relative abundance of certain Firmicutes and Proteobacteria by amplicon sequencing. During the first months of life, the CF gut microbiota is characterized by a significant enrichment of Ruminococcus gnavus, the expression of certain virulent bacterial traits, and the detection of human inflammation-related proteins. Metaproteomics provides information on composition and functionality, as well as data on host-microbiome interactions. Its strength is the identification and quantification of Actinobacteria and certain classes of Firmicutes, but alpha diversity indices are not comparable to those of amplicon sequencing. Both techniques detected an aberrant microbiota in our small cohort of infants with CF during their first year of life, dominated by the enrichment of R. gnavus within a human inflammatory environment. IMPORTANCE In recent years, some techniques have been incorporated for the study of microbial ecosystems, being 16S rRNA gene sequencing being the most widely used. Metaproteomics provides the advantage of identifying the interaction between microorganisms and human cells, but the available databases are less extensive as well as imprecise. Few studies compare the statistical differences between the two techniques to define the composition of an ecosystem. Our work shows that the two methods are comparable in terms of microorganism identification but provide different results in alpha diversity analysis. On the other hand, we have studied newborns with cystic fibrosis, for whom we have described the establishment of an intestinal ecosystem marked by the inflammatory response of the host and the enrichment of Ruminococcus gnavus.