Project description:Aging is accompanied by structural brain changes that are thought to underlie cognitive decline and dementia. Yet little is known regarding the association between increasing age, structural brain damage, and alterations of functional brain connectivity. The aim of this study was to evaluate whether cortical thickness and white matter damage as markers of age-related structural brain changes are associated with alterations in functional connectivity in non-demented healthy middle-aged to older adults. Therefore, we reconstructed functional connectomes from resting-state functional magnetic resonance imaging (MRI) (rsfMRI) data of 976 subjects from the Hamburg City Health Study, a prospective population-based study including participants aged 45-74 years from the metropolitan region Hamburg, Germany. We performed multiple linear regressions to examine the association of age, cortical thickness, and white matter damage quantified by the peak width of skeletonized mean diffusivity (PSMD) from diffusion tensor imaging on whole-brain network connectivity and four predefined resting state networks (default mode, dorsal, salience, and control network). In a second step, we extracted subnetworks with age-related decreased functional connectivity from these networks and conducted a mediation analysis to test whether the effect of age on these networks is mediated by decreased cortical thickness or PSMD. We observed an independent association of higher age with decreased functional connectivity, while there was no significant association of functional connectivity with cortical thickness or PSMD. Mediation analysis identified cortical thickness as a partial mediator between age and default subnetwork connectivity and functional connectivity within the default subnetwork as a partial mediator between age and executive cognitive function. These results indicate that, on a global scale, functional connectivity is not determined by structural damage in healthy middle-aged to older adults. There is a weak association of higher age with decreased functional connectivity which, for specific subnetworks, appears to be mediated by cortical thickness.
Project description:Non-linear relations of brain amyloid beta (Aβ) with task- based functional connectivity (tbFC) measured with functional magnetic resonance imaging (fMRI) have been reported in late middle age. Our objective was to examine the association between brain Aβ and resting-state functional connectivity (rsFC) in late middle-aged adults. Global brain Aβ burden was ascertained with 18F-Florbetaben Positron Emission Tomography (PET); rsFC was ascertained on 3T Magnetic Resonance Imaging (MRI) among 333 late middle-aged Hispanics adults without dementia in four major brain functional connectivity networks: default mode network (DMN), fronto-parietal control network (FPC), salience network (SAL) and dorsal attention network (DAN). We examined the relationship of global brain Aβ with rsFC using multivariable linear regression adjusted for age, sex, education, and APOE-ε4 genotype. We quantified the non-linear associations both with quadratic terms and by categorizing Aβ into three groups: low Aβ, intermediate Aβ, and positive Aβ. We found no significant linear or non-linear associations between Aβ, measured either continuously or categorically, with rsFC in the examined networks. Our null findings may be explained by the younger age of our participants in whom amyloid burden is relatively low. It is also possible that the recently reported non-linear relationship is exclusive to task fMRI and not rsfMRI.
Project description:Despite having a meaningful impact on the quality of life, emotional well-being is often understudied in older adults in favor of cognitive performance, particularly when examining its association with neurobiological function. Socially isolated older adults have poorer emotional health than their non-isolated peers and are at increased risk of dementia. Characterizing neurobiological correlates of emotional characteristics in this population may help elucidate pathways that link social isolation and dementia risk. In a sample of 50 socially isolated older adults aged 75+ years ("older-old"; 30 with mild cognitive impairment; 20 with unimpaired cognition), we use the National Institutes of Health Toolbox-Emotion Battery to examine associations between emotional characteristics and functional magnetic resonance imaging (fMRI)-derived intrinsic brain network functional connectivity. We found a positive association between the default mode network connectivity and negative affect. Amygdala-ventromedial prefrontal cortex (vmPFC) connectivity was negatively associated with psychological well-being and positively associated with negative affect. These results did not survive correction for multiple comparisons. These findings replicate, in a sample of socially isolated older-old adults, the previous work highlighting the relationship between amygdala-vmPFC connectivity and individual differences in emotional health, with more inverse connectivity associated with better emotional characteristics.
Project description:Exercise is a potential treatment to improve sleep quality in middle-aged and elderly individuals. Understanding exercise-induced changes in functional plasticity of brain circuits that underlie improvements in sleep among middle-aged and older adults can inform treatment of sleep problems. The aim of the study is to identify the effects of a 12-week exercise program on sleep quality and brain functional connectivity in middle-aged and older adults with insomnia. The trial was registered with Chinese Clinical Trial Register (ChiCTR2000033652). We recruited 84 healthy sleepers and 85 individuals with insomnia. Participants with insomnia were assigned to receive either a 12-week exercise intervention or were placed in a 12-week waitlist control condition. Thirty-seven middle-aged and older adults in the exercise group and 30 in the waitlist group completed both baseline and week 12 assessments. We found that middle-aged and older adults with insomnia showed significantly worse sleep quality than healthy sleepers. At the brain circuit level, insomnia patients showed decreased connectivity in the widespread motor network. After exercise intervention, self-reported sleep was increased in the exercise group (P < 0.001) compared to that in the waitlist group. We also found increased functional connectivity of the motor network with the cerebellum in the exercise group (P < 0.001). Moreover, we observed significant correlations between improvement in subjective sleep indices and connectivity changes within the motor network. We highlight exercise-induced improvement in sleep quality and functional plasticity of the aging brain.
Project description:IntroductionFunctional magnetic resonance imaging (fMRI) has shown that aging disturbs healthy brain organization and functional connectivity. However, how this age-induced alteration impacts dynamic brain function interaction has not yet been fully investigated. Dynamic function network connectivity (DFNC) analysis can produce a brain representation based on the time-varying network connectivity changes, which can be further used to study the brain aging mechanism for people at different age stages.MethodThis presented investigation examined the dynamic functional connectivity representation and its relationship with brain age for people at an elderly stage as well as in early adulthood. Specifically, the resting-state fMRI data from the University of North Carolina cohort of 34 young adults and 28 elderly participants were fed into a DFNC analysis pipeline. This DFNC pipeline forms an integrated dynamic functional connectivity (FC) analysis framework, which consists of brain functional network parcellation, dynamic FC feature extraction, and FC dynamics examination.ResultsThe statistical analysis demonstrates that extensive dynamic connection changes in the elderly concerning the transient brain state and the method of functional interaction in the brain. In addition, various machine learning algorithms have been developed to verify the ability of dynamic FC features to distinguish the age stage. The fraction time of DFNC states has the highest performance, which can achieve a classification accuracy of over 88% by a decision tree.DiscussionThe results proved there are dynamic FC alterations in the elderly, and the alteration was found to be correlated with mnemonic discrimination ability and could have an impact on the balance of functional integration and segregation.
Project description:IntroductionEffective connectivity (EC), the causal influence that functional activity in a source brain location exerts over functional activity in a target brain location, has the potential to provide different information about brain network dynamics than functional connectivity (FC), which quantifies activity synchrony between locations. However, head-to-head comparisons between EC and FC from either task-based or resting-state functional MRI (fMRI) data are rare, especially in terms of how they associate with salient aspects of brain health.MethodsIn this study, 100 cognitively-healthy participants in the Bogalusa Heart Study aged 54.2 ± 4.3years completed Stroop task-based fMRI, resting-state fMRI. EC and FC among 24 regions of interest (ROIs) previously identified as involved in Stroop task execution (EC-task and FC-task) and among 33 default mode network ROIs (EC-rest and FC-rest) were calculated from task-based and resting-state fMRI using deep stacking networks and Pearson correlation. The EC and FC measures were thresholded to generate directed and undirected graphs, from which standard graph metrics were calculated. Linear regression models related graph metrics to demographic, cardiometabolic risk factors, and cognitive function measures.ResultsWomen and whites (compared to men and African Americans) had better EC-task metrics, and better EC-task metrics associated with lower blood pressure, white matter hyperintensity volume, and higher vocabulary score (maximum value of p = 0.043). Women had better FC-task metrics, and better FC-task metrics associated with APOE-ε4 3-3 genotype and better hemoglobin-A1c, white matter hyperintensity volume and digit span backwards score (maximum value of p = 0.047). Better EC rest metrics associated with lower age, non-drinker status, and better BMI, white matter hyperintensity volume, logical memory II total score, and word reading score (maximum value of p = 0.044). Women and non-drinkers had better FC-rest metrics (value of p = 0.004).DiscussionIn a diverse, cognitively healthy, middle-aged community sample, EC and FC based graph metrics from task-based fMRI data, and EC based graph metrics from resting-state fMRI data, were associated with recognized indicators of brain health in differing ways. Future studies of brain health should consider taking both task-based and resting-state fMRI scans and measuring both EC and FC analyses to get a more complete picture of functional networks relevant to brain health.
Project description:Introduction: There are still uncertainties about the true nature of age related changes in topological properties of the brain functional network and its structural connectivity during various developmental stages. In this cross- sectional study, we investigated the effects of age and its relationship with regional nodal properties of the functional brain network and white matter integrity. Method: DTI and fMRI data were acquired from 458 healthy Chinese participants ranging from age 8 to 81 years. Tractography was conducted on the DTI data using FSL. Graph Theory analyses were conducted on the functional data yielding topological properties of the functional network using SPM and GRETNA toolbox. Two multiple regressions were performed to investigate the effects of age on nodal topological properties of the functional brain network and white matter integrity. Result: For the functional studies, we observed that regional nodal characteristics such as node betweenness were decreased while node degree and node efficiency was increased in relation to increasing age. Perversely, we observed that the relationship between nodal topological properties and fasciculus structures were primarily positive for nodal betweenness but negative for nodal degree and nodal efficiency. Decrease in functional nodal betweenness was primarily located in superior frontal lobe, right occipital lobe and the global hubs. These brain regions also had both direct and indirect anatomical relationships with the 14 fiber bundles. A linear age related decreases in the Fractional anisotropy (FA) value was found in the callosum forceps minor. Conclusion: These results suggests that age related differences were more pronounced in the functional than in structural measure indicating these measures do not have direct one-to-one mapping. Our study also indicates that the fiber bundles with longer fibers exhibited a more pronounced effect on the properties of functional network.
Project description:Sleep has been hypothesised to facilitate waste clearance from the brain. We aimed to determine whether sleep is associated with perivascular spaces on brain magnetic resonance imaging (MRI), a potential marker of impaired brain waste clearance, in a population-based cohort of middle-aged and elderly people. In 559 participants (mean [SD] age 62 [6] years, 52% women) from the population-based Rotterdam Study, we measured total sleep time, sleep onset latency, wake after sleep onset and sleep efficiency with actigraphy and polysomnography. Perivascular space load was determined with brain MRI in four regions (centrum semiovale, basal ganglia, hippocampus, and midbrain) via a validated machine learning algorithm using T2-weighted MR images. Associations between sleep characteristics and perivascular space load were analysed with zero-inflated negative binomial regression models adjusted for various confounders. We found that higher actigraphy-estimated sleep efficiency was associated with a higher perivascular space load in the centrum semiovale (odds ratio 1.10, 95% confidence interval 1.04-1.16, p = 0.0008). No other actigraphic or polysomnographic sleep characteristics were associated with perivascular space load in other brain regions. We conclude that, contrary to our hypothesis, associations of sleep with perivascular space load in this middle-aged and elderly population remained limited to an association of a high actigraphy-estimated sleep efficiency with a higher perivascular space load in the centrum semiovale.
Project description:Several studies have suggested that functional connectivity (FC) is constrained by the underlying structural connectivity (SC) and mutually correlated. However, not many studies have focused on differences in the network organization of SC and FC, and on how these differences may inform us about their mutual interaction. To explore this issue, we adopt a multi-layer framework, with SC and FC, constructed using Magnetic Resonance Imaging (MRI) data from the Human Connectome Project, forming a two-layer multiplex network. In particular, we examine node strength assortativity within and between the SC and FC layer. We find that, in general, SC is organized assortatively, indicating brain regions are on average connected to other brain regions with similar node strengths. On the other hand, FC shows disassortative mixing. This discrepancy is apparent also among individual resting-state networks within SC and FC. In addition, these patterns show lateralization, with disassortative mixing within FC subnetworks mainly driven from the left hemisphere. We discuss our findings in the context of robustness to structural failure, and we suggest that discordant and lateralized patterns of associativity in SC and FC may provide clues to understand laterality of some neurological dysfunctions and recovery.