Project description:UnlabelledHuman respiratory syncytial virus (RSV) is associated with severe childhood respiratory infections. A clear description of local RSV molecular epidemiology, evolution, and transmission requires detailed sequence data and can inform new strategies for virus control and vaccine development. We have generated 27 complete or nearly complete genomes of RSV from hospitalized children attending a rural coastal district hospital in Kilifi, Kenya, over a 10-year period using a novel full-genome deep-sequencing process. Phylogenetic analysis of the new genomes demonstrated the existence and cocirculation of multiple genotypes in both RSV A and B groups in Kilifi. Comparison of local versus global strains demonstrated that most RSV A variants observed locally in Kilifi were also seen in other parts of the world, while the Kilifi RSV B genomes encoded a high degree of variation that was not observed in other parts of the world. The nucleotide substitution rates for the individual open reading frames (ORFs) were highest in the regions encoding the attachment (G) glycoprotein and the NS2 protein. The analysis of RSV full genomes, compared to subgenomic regions, provided more precise estimates of the RSV sequence changes and revealed important patterns of RSV genomic variation and global movement. The novel sequencing method and the new RSV genomic sequences reported here expand our knowledge base for large-scale RSV epidemiological and transmission studies.ImportanceThe new RSV genomic sequences and the novel sequencing method reported here provide important data for understanding RSV transmission and vaccine development. Given the complex interplay between RSV A and RSV B infections, the existence of local RSV B evolution is an important factor in vaccine deployment.
Project description:BackgroundThe increasing burden of dengue virus on public health due to more explosive and frequent outbreaks highlights the need for improved surveillance and control. Genomic surveillance of dengue virus not only provides important insights into the emergence and spread of genetically diverse serotypes and genotypes, but it is also critical to monitor the effectiveness of newly implemented control strategies. Here, we present DengueSeq, an amplicon sequencing protocol, which enables whole-genome sequencing of all four dengue virus serotypes.ResultsWe developed primer schemes for the four dengue virus serotypes, which can be combined into a pan-serotype approach. We validated both approaches using genetically diverse virus stocks and clinical specimens that contained a range of virus copies. High genome coverage (>95%) was achieved for all genotypes, except DENV2 (genotype VI) and DENV 4 (genotype IV) sylvatics, with similar performance of the serotype-specific and pan-serotype approaches. The limit of detection to reach 70% coverage was 101-102 RNA copies/μL for all four serotypes, which is similar to other commonly used primer schemes. DengueSeq facilitates the sequencing of samples without known serotypes, allows the detection of multiple serotypes in the same sample, and can be used with a variety of library prep kits and sequencing instruments.ConclusionsDengueSeq was systematically evaluated with virus stocks and clinical specimens spanning the genetic diversity within each of the four dengue virus serotypes. The primer schemes can be plugged into existing amplicon sequencing workflows to facilitate the global need for expanded dengue virus genomic surveillance.
Project description:Respiratory Syncytial Virus (RSV) is the leading cause of lower respiratory-tract infections in infants and young children worldwide. Despite this, only six complete genome sequences of original strains have been previously published, the most recent of which dates back 35 and 26 years for RSV group A and group B respectively.We present a semi-automated sequencing method allowing for the sequencing of four RSV whole genomes simultaneously. We were able to sequence the complete coding sequences of 13 RSV A and 4 RSV B strains from Milwaukee collected from 1998-2010. Another 12 RSV A and 5 RSV B strains sequenced in this study cover the majority of the genome. All RSV A and RSV B sequences were analyzed by neighbor-joining, maximum parsimony and Bayesian phylogeny methods. Genetic diversity was high among RSV A viruses in Milwaukee including the circulation of multiple genotypes (GA1, GA2, GA5, GA7) with GA2 persisting throughout the 13 years of the study. However, RSV B genomes showed little variation with all belonging to the BA genotype. For RSV A, the same evolutionary patterns and clades were seen consistently across the whole genome including all intergenic, coding, and non-coding regions sequences.The sequencing strategy presented in this work allows for RSV A and B genomes to be sequenced simultaneously in two working days and with a low cost. We have significantly increased the amount of genomic data that is available for both RSV A and B, providing the basic molecular characteristics of RSV strains circulating in Milwaukee over the last 13 years. This information can be used for comparative analysis with strains circulating in other communities around the world which should also help with the development of new strategies for control of RSV, specifically vaccine development and improvement of RSV diagnostics.
Project description:A globally implemented unified phylogenetic classification for human respiratory syncytial virus (HRSV) below the subgroup level remains elusive. We formulated global consensus of HRSV classification on the basis of the challenges and limitations of our previous proposals and the future of genomic surveillance. From a high-quality curated dataset of 1,480 HRSV-A and 1,385 HRSV-B genomes submitted to GenBank and GISAID (https://www.gisaid.org) public sequence databases through March 2023, we categorized HRSV-A/B sequences into lineages based on phylogenetic clades and amino acid markers. We defined 24 lineages within HRSV-A and 16 within HRSV-B and provided guidelines for defining prospective lineages. Our classification demonstrated robustness in its applicability to both complete and partial genomes. We envision that this unified HRSV classification proposal will strengthen HRSV molecular epidemiology on a global scale.
Project description:Human respiratory syncytial virus (HRSV) is a common etiological agent of acute lower respiratory tract disease in infants. We report the molecular epidemiology of HRSV in Niigata, Japan, over six successive seasons (from 2001 to 2007) and the emerging genotypes of HRSV subgroup A (HRSV-A) strains. A total of 488 HRSV samples were obtained from 1,103 screened cases in a pediatric clinic in Niigata. According to the phylogenetic analysis, among the PCR-positive samples, 338 HRSV-A strains clustered into the previously reported genotypes GA5 and GA7 and two novel genotypes, NA1 and NA2, which were genetically close to GA2 strains. One hundred fifty HRSV-B strains clustered into three genotypes, namely, GB3, SAB3, and BA, which has a 60-nucleotide insertion in the second hypervariable region of the G protein. The NA1 strains emerged first, in the 2004-2005 season, and subsequently, the NA2 strain emerged in the 2005-2006 season. Both strains caused large epidemics in the 2005-2006 and 2006-2007 seasons. The average age of children who were infected with NA2 strains was significantly higher than that of those infected with GA5 and the frequency of reinfection by NA2 was the highest among all genotypes, suggesting that this genotype possessed new antigenicity for evading past host immunity. This is the first paper to show a possible correlation between an emerging genotype, NA2, and large outbreaks of HRSV in Japan. Continuing studies to follow up the genetic changes and to clarify the mechanism of reinfection in HRSV are important steps to understand HRSV infections.
Project description:BackgroundHuman respiratory syncytial virus (RSV) is one of the leading causes of respiratory infections, especially in infants and young children. Previous RSV sequencing studies have primarily focused on partial sequencing of G gene (200-300 nucleotides) for genotype characterization or diagnostics. However, the genotype assignment with G gene has not recapitulated the phylogenetic signal of other genes, and there is no consensus on RSV genotype definition.MethodsWe conducted maximum likelihood phylogenetic analysis with 10 RSV individual genes and whole-genome sequence (WGS) that are published in GenBank. RSV genotypes were determined by using phylogenetic analysis and pair-wise node distances.ResultsIn this study, we first statistically examined the phylogenetic incongruence, rate variation for each RSV gene sequence and WGS. We then proposed a new RSV genotyping system based on a comparative analysis of WGS and the temporal distribution of strains. We also provide an RSV classification tool to perform RSV genotype assignment and a publicly accessible up-to-date instance of Nextstrain where the phylogenetic relationship of all genotypes can be explored.ConclusionsThis revised RSV genotyping system will provide important information for disease surveillance, epidemiology, and vaccine development.
Project description:The human respiratory syncytial virus (RSV) is considered one of the most common viruses that infect children globally. The virus is known to have extensive gene sequence variability within and between RSV groups A and B globally; however, there is no information on the whole-genome characterization and diversity of RSV in Kuwait. Therefore, this study aimed to sequence the entire genome of RSV strains isolated from patients with acute respiratory tract infection (ARTI) in Kuwait. Therefore, this study aimed to sequence the entire genome of RSV strains isolated from patients with ARTI in Kuwait. Between January 2020 and September 2022, 7,093 respiratory samples were collected from hospitalized infants, children, and adults and were analyzed for respiratory viruses by multiplex real-time PCR. Whole-genome sequencing using the Oxford Nanopore sequencing technology was performed on 84 RSV-positive samples. The results revealed a higher prevalence of group A (76%) than group B (24%) RSV isolates. Phylogenetic analysis showed that RSV-A strains clustered with the GA2.3.5 sub-genotype and RSV-B strains clustered with the GB5.0.5a sub-genotype; however, forming new lineages of RSV-A and RSV-B circulated in Kuwait during this period. Genetic variability was higher among the group A viruses than group B viruses, and the rate of synonymous and missense mutations was high in genes other than the G protein-coding gene. We also detected several known and unique molecular markers in different protein-coding genes. This is the first study in Kuwait to characterize the whole genomes of RSV A and B to identify the circulating genotypes, comprehend the genetic diversity and the evolution of the virus, and identify important genetic markers associated with specific genotypes.IMPORTANCEWhole-genome sequencing of respiratory syncytial virus (RSV) strains in Kuwait using MinION Nanopore technology was used to characterize and analyze the genotypes and sub-genotypes of the RSV circulating among patients with acute respiratory tract infections in Kuwait. This study also identified known and unknown gene mutations and imported genetic markers associated with specific genotypes. These results will assist in establishing a framework for RSV classification and allow for a better consideration of the mechanisms leading to the generation of diversity of RSV. In addition, these data will allow a comparison of vaccine viruses with those in Kuwait, providing useful insights into future vaccine and therapy strategies for RSV in Kuwait.
Project description:A viral whole-genome sequencing (WGS) strategy, based on PCR amplification followed by next-generation sequencing, was used to investigate a nosocomial respiratory syncytial virus-B (RSV-B) outbreak in a hematology-oncology and stem cell transplant unit. RSV-B genomes from 16 patients and health care workers (HCWs) suspected to be involved in the outbreak were compared to RSV-B genomes that were acquired from outpatients during the same time period but epidemiologically unrelated to the outbreak. Phylogenetic analysis of the whole genome identified a cluster of 11 patients and HCWs who had an identical RSV-B strain which was clearly distinct from strains recovered from individuals unrelated to the outbreak. Sequence variation of the glycoprotein (G) gene alone was insufficient to distinguish the outbreak strains from the outbreak-unrelated strains, thereby demonstrating that WGS is valuable for local outbreak investigation.