Project description:Obesity-related disorders are associated with the development of ischemic heart disease. Adiponectin is a circulating adipose-derived cytokine that is downregulated in obese individuals and after myocardial infarction. Here, we examine the role of adiponectin in myocardial remodeling in response to acute injury. Ischemia-reperfusion in adiponectin-deficient (APN-KO) mice resulted in increased myocardial infarct size, myocardial apoptosis and tumor necrosis factor (TNF)-alpha expression compared with wild-type mice. Administration of adiponectin diminished infarct size, apoptosis and TNF-alpha production in both APN-KO and wild-type mice. In cultured cardiac cells, adiponectin inhibited apoptosis and TNF-alpha production. Dominant negative AMP-activated protein kinase (AMPK) reversed the inhibitory effects of adiponectin on apoptosis but had no effect on the suppressive effect of adiponectin on TNF-alpha production. Adiponectin induced cyclooxygenase (COX)-2-dependent synthesis of prostaglandin E(2) in cardiac cells, and COX-2 inhibition reversed the inhibitory effects of adiponectin on TNF-alpha production and infarct size. These data suggest that adiponectin protects the heart from ischemia-reperfusion injury through both AMPK- and COX-2-dependent mechanisms.
Project description:Regulated necrosis (necroptosis) and apoptosis are important biological features of ischemia-reperfusion (I/R) injury. However, the molecular mechanisms underlying myocardial necroptosis remain elusive. Leucine rich repeat containing G protein-coupled receptor 6 (LGR6) has been reported to play important roles in various cardiovascular disease. In this study, we aimed to determine whether LGR6 suppresses I/R-induced myocardial necroptosis and the underlying molecular mechanisms. We generated LGR6 knockout mice and used ligation of left anterior descending coronary artery to produce an in vivo I/R model. The effects of LGR6 and its downstream molecules were subsequently identified using RNA sequencing and CHIP assays. We observed significantly downregulated LGR6 expression in hearts post myocardial I/R and cardiomyocytes post hypoxia and reoxygenation (HR). LGR6 deficiency promoted and LGR6 overexpression inhibited necroptosis and acute myocardial injury after I/R. Mechanistically, in vivo and in vitro experiments suggest that LGR6 regulates the expression of STAT2 and ZBP1 by activating the Wnt signaling pathway, thereby inhibiting cardiomyocyte necroptosis after HR. Inhibiting STAT2 and ZBP1 effectively alleviated the aggravating effect of LGR6 deficiency on myocardial necroptosis after I/R. Furthermore, activating LGR6 with RSPO3 also effectively protected mice from acute myocardial I/R injury. Our findings reveal that RSPO3-LGR6 axis downregulates the expression of STAT2 and ZBP1 through the Wnt signaling pathway, thereby inhibiting I/R-induced myocardial injury and necroptosis. Targeting the RSPO3-LGR6 axis may be a potential therapeutic strategy to treat myocardial I/R injury.
Project description:BackgroundCathelicidins are a major group of natural antimicrobial peptides which play essential roles in regulating host defense and immunity. In addition to the antimicrobial and immunomodulatory activities, recent studies have reported the involvement of cathelicidins in cardiovascular diseases by regulating inflammatory response and microvascular dysfunction. However, the role of cathelicidins in myocardial apoptosis upon cardiac ischemia/reperfusion (I/R) injury remains largely unknown.MethodsCRAMP (cathelicidin-related antimicrobial peptide) levels were measured in the heart and serum from I/R mice and in neonatal mouse cardiomyocytes treated with oxygen glucose deprivation/reperfusion (OGDR). Human serum cathelicidin antimicrobial peptide (LL-37) levels were measured in myocardial infarction (MI) patients. The role of CRAMP in myocardial apoptosis upon I/R injury was investigated in mice injected with the CRAMP peptide and in CRAMP knockout (KO) mice, as well as in OGDR-treated cardiomyocytes.ResultsWe observed reduced CRAMP level in both heart and serum samples from I/R mice and in OGDR-treated cardiomyocytes, as well as reduced LL-37 level in MI patients. Knockdown of CRAMP enhanced cardiomyocyte apoptosis, and CRAMP KO mice displayed increased infarct size and myocardial apoptosis. In contrast, the CRAMP peptide reduced cardiomyocyte apoptosis and I/R injury. The CRAMP peptide inhibited cardiomyocyte apoptosis by activation of Akt and ERK1/2 and phosphorylation and nuclear export of FoxO3a. c-Jun was identified as a negative regulator of the CRAMP gene. Moreover, lower level of serum LL-37/neutrophil ratio was associated with readmission and/or death in MI patients during 1-year follow-up.ConclusionsCRAMP protects against cardiomyocyte apoptosis and cardiac I/R injury via activation of Akt and ERK and phosphorylation and nuclear export of FoxO3a. Increasing LL-37 might be a novel therapy for cardiac ischemic injury.
Project description:Background: Phytoestrogens are a class of natural compounds that have structural similarities to estrogens. They have been identified to confer potent cardioprotective effects in experimental myocardial ischemia-reperfusion injury (MIRI) animal models. We aimed to investigate the effect of PE on MIRI and its intrinsic mechanisms. Methods: A systematic search was conducted to identify PEs that have been validated in animal studies or clinical studies as effective against MIRI. Then, we collected studies that met inclusion and exclusion criteria from January 2016 to September 2021. The SYRCLE's RoB tool was used to evaluate the quality. Data were analyzed by STATA 16.0 software. Results: The search yielded 18 phytoestrogens effective against heart disease. They are genistein, quercetin, biochanin A, formononetin, daidzein, kaempferol, icariin, puerarin, rutin, notoginsenoside R1, tanshinone IIA, ginsenoside Rb1, ginsenoside Rb3, ginsenoside Rg1, ginsenoside Re, resveratrol, polydatin, and bakuchiol. Then, a total of 20 studies from 17 articles with a total of 355 animals were included in this meta-analysis. The results show that PE significantly reduced the myocardial infarct size in MIRI animals compared with the control group (p < 0.001). PE treatment significantly reduced the creatine kinase level (p < 0.001) and cTnI level (p < 0.001), increased left ventricular ejection fraction (p < 0.001) and left ventricular fractional shortening (p < 0.001) in MIRI animals. In addition, PE also exerts a significant heart rate lowering effect (p < 0.001). Conclusion: Preclinical evidence suggests that PE can be multi-targeted for cardioprotective effects in MIRI. More large animal studies and clinical research are still needed in the future to further confirm its role in MIRI.
Project description:BackgroundMyocardial ischemia-reperfusion injury (IRI) has become one of the most serious complications after reperfusion therapy in patients with acute myocardial infarction. Small ubiquitin-like modification (SUMOylation) is a reversible process, including SUMO E1-, E2-, and E3-mediated SUMOylation and SUMO-specific protease-mediated deSUMOylation, with the latter having been shown to play a vital role in myocardial IRI previously. However, little is known about the function and regulation of SUMO E3 ligases in myocardial IRI.ResultsIn this study, we found dramatically decreased expression of PIAS1 after ischemia/reperfusion (I/R) in mouse myocardium and H9C2 cells. PIAS1 deficiency aggravated apoptosis and inflammation of cardiomyocytes via activating the NF-κB pathway after I/R. Mechanistically, we identified PIAS1 as a specific E3 ligase for PPARγ SUMOylation. Moreover, H9C2 cells treated with hypoxia/reoxygenation (H/R) displayed reduced PPARγ SUMOylation as a result of down-regulated PIAS1, and act an anti-apoptotic and anti-inflammatory function through repressing NF-κB activity. Finally, overexpression of PIAS1 in H9C2 cells could remarkably ameliorate I/R injury.ConclusionsCollectively, our findings demonstrate the crucial role of PIAS1-mediated PPARγ SUMOylation in protecting against myocardial IRI.
Project description:Aim(-)-Epicatechin (EPI) has physiological activities such as antioxidant, anti-inflammatory and immune enhancement. In this study, we elucidated the protective effects of EPI in myocardial ischemia/reperfusion injury (MI/RI) and its mechanisms.MethodsAn in vivo I/R model was constructed by performing left anterior descending coronary artery surgery on rats, and an in vitro I/R model was constructed by subjecting hypoxia/reperfusion treatment on H9C2 cells. The damage of cardiac tissues was detected by 2,3,5-triphenyltetrazolium chloride (TTC) and hematoxylin-eosin (H&E) staining, and expressions of ferroptosis-related proteins were examined by Western blot. Changes in the number of autophagosomes, the levels of oxidative stress and Fe2+ were also examined.ResultsEPI reduced abnormal electrocardiogram waveform and infarct size caused by MI/RI in rats. The increasing trend of levels of reactive oxygen species (ROS) and Fe2+ was reversed by EPI, suggesting that EPI can reduce ferroptosis in vivo. Moreover, the levels of lipid ROS and LC3 in H9C2 cells were decreased with EPI treatment, and autophagy and ferroptosis were also alleviated in a dose-dependent manner in vitro. Co-cultivation of USP14 inhibitor IU1 and EPI further revealed that EPI regulates ferroptosis through the USP14-autophagy pathway.ConclusionsEPI can reduce the level of oxidative stress by promoting USP14 to reduce autophagy, thus inhibiting autophagy dependent ferroptosis and reducing oxidative stress, and has a protective effect on myocardial infarction/myocardial infarction.
Project description:BackgroundMyocardial infarction is a common perioperative complication, and blood flow restoration causes ischemia/reperfusion injury (IRI). Dexmedetomidine (DEX) pretreatment can protect against cardiac IRI, but the mechanism is still insufficiently understood.MethodsIn vivo, myocardial ischemia/reperfusion (30 minutes/120 minutes) was induced via ligation and then reperfusion of the left anterior descending coronary artery (LAD) in mice. Intravenous infusion of 10 μg/kg DEX was performed 20 minutes before ligation. Moreover, the α2-adrenoreceptor antagonist Yohimbine and STAT3 inhibitor Stattic were applied 30 minutes ahead of DEX infusion. In vitro, hypoxia/reoxygenation (H/R) with DEX pretreatment for 1 hour was performed in isolated neonatal rat cardiomyocytes. In addition, Stattic was applied before DEX pretreatment.ResultsIn the mouse cardiac ischemia/reperfusion model, DEX pretreatment lowered the serum creatine kinase-MB isoenzyme (CK-MB) levels (2.47 ± 0.165 vs 1.55 ± 0.183; P < .0001), downregulated the inflammatory response ( P ≤ .0303), decreased 4-hydroxynonenal (4-HNE) production and cell apoptosis ( P = .0074), and promoted the phosphorylation of STAT3 (4.94 ± 0.690 vs 6.68 ± 0.710, P = .0001), which could be blunted by Yohimbine and Stattic. The bioinformatic analysis of differentially expressed mRNAs further confirmed that STAT3 signaling might be involved in the cardioprotection of DEX. Upon H/R treatment in isolated neonatal rat cardiomyocytes, 5 μM DEX pretreatment improved cell viability ( P = .0005), inhibited reactive oxygen species (ROS) production and calcium overload (both P ≤ .0040), decreased cell apoptosis ( P = .0470), and promoted STAT3 phosphorylation at Tyr705 (0.102 ± 0.0224 vs 0.297 ± 0.0937; P < .0001) and Ser727 (0.586 ± 0.177 vs 0.886 ± 0.0546; P = .0157), which could be abolished by Stattic.ConclusionsDEX pretreatment protects against myocardial IRI, presumably by promoting STAT3 phosphorylation via the α2-adrenoreceptor in vivo and in vitro.
Project description:Myocardial ischemia-reperfusion (IR) injury occurs when occlusive coronary artery restores blood supply after events such as myocardial infarction, stroke, cardiac arrest and resuscitation, and organ transplantation. However, the mechanisms involved are poorly understood, and effective pharmacological interventions are still lacking. A previous study demonstrated that 25-hydroxycholesterol (25-HC) contributed to lipid metabolism and cholesterol metabolism as an oxysterol molecule. We herein explored whether 25-hydroxycholesterol (25-HC) has cardioprotective properties against IR injury and explored its underlying mechanisms. 25-HC was administered before reperfusion procedure in IR injury model mice. We found that 25-HC significantly reduced the IR-induced infarct size and improved cardiac function, and this protective effect was associated with reduced phosphorylation of p38-MAPK and JNK1/2. Besides, 25-HC also inhibited the Bax/Bcl-2 ratio and the relative expression of cleaved caspase-3. Furthermore, 25-HC decreased the PARP activity, indicating that 25-HC ameliorates IR injury via the PARP pathway. The 25-HC group abolished cardioprotection in the presence of little PARP activity, suggesting that the PARP activity is essential for 25-HC to exert its effect during IR injury. Our primary study indicates that 25-HC ameliorated IR injury by inhibiting the PARP activity and decreasing myocardial apoptosis, which makes it a potential therapeutic drug in IR injury of the heart.
Project description:Rapamycin (Sirolimus®) is used to prevent rejection of transplanted organs and coronary restenosis. We reported that rapamycin induced cardioprotection against ischemia-reperfusion (I/R) injury through opening of mitochondrial K(ATP) channels. However, signaling mechanisms in rapamycin-induced cardioprotection are currently unknown. Considering that STAT3 is protective in the heart, we investigated the potential role of this transcription factor in rapamycin-induced protection against (I/R) injury. Adult male ICR mice were treated with rapamycin (0.25mg/kg, i.p.) or vehicle (DMSO) with/without inhibitor of JAK2 (AG-490) or STAT3 (stattic). One hour later, the hearts were subjected to I/R either in Langendorff mode or in situ ligation of left coronary artery. Additionally, primary murine cardiomyocytes were subjected to simulated ischemia-reoxygenation (SI/RO) injury in vitro. For in situ targeted knockdown of STAT3, lentiviral vector containing short hairpin RNA was injected into the left ventricle 3 weeks prior to initiating I/R injury. Infarct size, cardiac function, and cardiomyocyte necrosis and apoptosis were assessed. Rapamycin reduced infarct size, improved cardiac function following I/R, and limited cardiomyocyte necrosis as well as apoptosis following SI/RO which were blocked by AG-490 and stattic. In situ knock-down of STAT3 attenuated rapamycin-induced protection against I/R injury. Rapamycin triggered unique cardioprotective signaling including phosphorylation of ERK, STAT3, eNOS and glycogen synthase kinase-3ß in concert with increased prosurvival Bcl-2 to Bax ratio. Our data suggest that JAK2-STAT3 signaling plays an essential role in rapamycin-induced cardioprotection. We propose that rapamycin is a novel and clinically relevant pharmacological strategy to target STAT3 activation for treatment of myocardial infarction.
Project description:Background:Oxidative stress is a major contributor to the onset and development of myocardial ischemia reperfusion injury (MIRI). Sappanone A (SA), a homoisoflavanone extracted from the heartwood of Caesalpinia sappan L., has been demonstrated to possess powerful antioxidant activity. Therefore, this study aimed to determine the protective effect of SA on MIRI and investigate its underlying mechanism. Methods:The rat hearts were isolated and underwent 30-min ischemia, followed by 120-min reperfusion to establish the MIRI model, using the Langendorff method. SA was administrated intraperitoneally into rats 1 h prior to heart isolation. The myocardial infarct size and apoptosis were measured by TTC and terminal deoxynucleotidyl transferase dUTP nick end labeling staining. Myocardial enzyme activity, MDA content and the activities of SOD and GSH-Px were detected by colorimetric spectrophotometric method. Reactive oxygen species (ROS) level was detected by DCFH-DA probe. The change in Keap1/Nrf2 signaling pathway was evaluated by Western blotting. Results:SA reduced myocardial infarct size and the release of CK-MB and LDH in a dose-dependent manner. Moreover, SA improved the recovery of cardiac function, inhibited MIRI-induced apoptosis, repressed the production of ROS and MDA, and enhanced the activities of SOD and GSH-Px. Mechanistically, SA downregulated Keap1, induced Nrf2 nuclear accumulation, and enhanced Nrf2 transcriptional activity, subsequently resulting in an increase in the expression of the Nrf2 target genes heme oxygenase-1 and NAD(P)H quinone dehydrogenase 1. Moreover, SA enhanced the phosphorylation of Nfr2, but the enhancement in Nfr2 phosphorylation was abrogated by PKC or PI3K inhibitor. Conclusion:Collectively, it was demonstrated that SA prevents MIRI via coordinating the cellular antioxidant defenses and maintaining the redox balance, by modulation of Nrf2 via the PKC or PI3K pathway. Therefore, SA was a potential therapeutic drug for treating MIRI.