Unknown

Dataset Information

0

Serine 31 phosphorylation of histone variant H3.3 is specific to regions bordering centromeres in metaphase chromosomes.


ABSTRACT: Histones are the fundamental components of the nucleosome. Physiologically relevant variation is introduced into this structure through chromatin remodeling, addition of covalent modifications, or replacement with specialized histone variants. The histone H3 family contains an evolutionary conserved variant, H3.3, which differs in sequence in only five amino acids from the canonical H3, H3.1, and was shown to play a role in the transcriptional activation of genes. Histone H3.3 contains a serine (S) to alanine (A) replacement at amino acid position 31 (S31). Here, we demonstrate by both MS and biochemical methods that this serine is phosphorylated (S31P) during mitosis in mammalian cells. In contrast to H3 S10 and H3 S28, which first become phosphorylated in prophase, H3.3 S31 phosphorylation is observed only in late prometaphase and metaphase and is absent in anaphase. Additionally, H3.3 S31P forms a speckled staining pattern on the metaphase plate, whereas H3 S10 and H3 S28 phosphorylation localizes to the outer regions of condensed DNA. Furthermore, in contrast to phosphorylated general H3, H3.3 S31P is localized in distinct chromosomal regions immediately adjacent to centromeres. These findings argue for a unique function for the phosphorylated isoform of H3.3 that is distinct from its suspected role in gene activation.

SUBMITTER: Hake SB 

PROVIDER: S-EPMC1088391 | biostudies-literature | 2005 May

REPOSITORIES: biostudies-literature

altmetric image

Publications

Serine 31 phosphorylation of histone variant H3.3 is specific to regions bordering centromeres in metaphase chromosomes.

Hake Sandra B SB   Garcia Benjamin A BA   Kauer Monika M   Baker Stephen P SP   Shabanowitz Jeffrey J   Hunt Donald F DF   Allis C David CD  

Proceedings of the National Academy of Sciences of the United States of America 20050425 18


Histones are the fundamental components of the nucleosome. Physiologically relevant variation is introduced into this structure through chromatin remodeling, addition of covalent modifications, or replacement with specialized histone variants. The histone H3 family contains an evolutionary conserved variant, H3.3, which differs in sequence in only five amino acids from the canonical H3, H3.1, and was shown to play a role in the transcriptional activation of genes. Histone H3.3 contains a serine  ...[more]

Similar Datasets

| S-EPMC6598431 | biostudies-literature
| S-EPMC4357709 | biostudies-literature
2024-11-26 | GSE261756 | GEO
| S-EPMC7517595 | biostudies-literature
2024-11-26 | GSE261753 | GEO
2024-11-26 | GSE261755 | GEO
2024-11-26 | GSE261754 | GEO
| S-EPMC4771749 | biostudies-literature
| S-EPMC4965263 | biostudies-literature
| S-EPMC2885838 | biostudies-literature