Unknown

Dataset Information

0

X-rays radiomics-based machine learning classification of atypical cartilaginous tumour and high-grade chondrosarcoma of long bones.


ABSTRACT:

Background

Atypical cartilaginous tumour (ACT) and high-grade chondrosarcoma (CS) of long bones are respectively managed with active surveillance or curettage and wide resection. Our aim was to determine diagnostic performance of X-rays radiomics-based machine learning for classification of ACT and high-grade CS of long bones.

Methods

This retrospective, IRB-approved study included 150 patients with surgically treated and histology-proven lesions at two tertiary bone sarcoma centres. At centre 1, the dataset was split into training (n = 71 ACT, n = 24 high-grade CS) and internal test (n = 19 ACT, n = 6 high-grade CS) cohorts, respectively, based on the date of surgery. At centre 2, the dataset constituted the external test cohort (n = 12 ACT, n = 18 high-grade CS). Manual segmentation was performed on frontal view X-rays, using MRI or CT for preliminary identification of lesion margins. After image pre-processing, radiomic features were extracted. Dimensionality reduction included stability, coefficient of variation, and mutual information analyses. In the training cohort, after class balancing, a machine learning classifier (Support Vector Machine) was automatically tuned using nested 10-fold cross-validation. Then, it was tested on both the test cohorts and compared to two musculoskeletal radiologists' performance using McNemar's test.

Findings

Five radiomic features (3 morphology, 2 texture) passed dimensionality reduction. After tuning on the training cohort (AUC = 0.75), the classifier had 80%, 83%, 79% and 80%, 89%, 67% accuracy, sensitivity, and specificity in the internal (temporally independent) and external (geographically independent) test cohorts, respectively, with no difference compared to the radiologists (p ≥ 0.617).

Interpretation

X-rays radiomics-based machine learning accurately differentiates between ACT and high-grade CS of long bones.

Funding

AIRC Investigator Grant.

SUBMITTER: Gitto S 

PROVIDER: S-EPMC10884340 | biostudies-literature | 2024 Feb

REPOSITORIES: biostudies-literature

altmetric image

Publications


<h4>Background</h4>Atypical cartilaginous tumour (ACT) and high-grade chondrosarcoma (CS) of long bones are respectively managed with active surveillance or curettage and wide resection. Our aim was to determine diagnostic performance of X-rays radiomics-based machine learning for classification of ACT and high-grade CS of long bones.<h4>Methods</h4>This retrospective, IRB-approved study included 150 patients with surgically treated and histology-proven lesions at two tertiary bone sarcoma centr  ...[more]

Similar Datasets

| S-EPMC8688587 | biostudies-literature
| S-EPMC5957352 | biostudies-literature
| S-EPMC8170113 | biostudies-literature
| S-EPMC8023913 | biostudies-literature
| S-EPMC8320587 | biostudies-literature
| S-EPMC10610631 | biostudies-literature
| S-EPMC9497620 | biostudies-literature
| S-EPMC6929242 | biostudies-literature
| S-EPMC11007871 | biostudies-literature
| S-EPMC7336404 | biostudies-literature