Ontology highlight
ABSTRACT: Background
Atypical cartilaginous tumour (ACT) and high-grade chondrosarcoma (CS) of long bones are respectively managed with active surveillance or curettage and wide resection. Our aim was to determine diagnostic performance of X-rays radiomics-based machine learning for classification of ACT and high-grade CS of long bones.Methods
This retrospective, IRB-approved study included 150 patients with surgically treated and histology-proven lesions at two tertiary bone sarcoma centres. At centre 1, the dataset was split into training (n = 71 ACT, n = 24 high-grade CS) and internal test (n = 19 ACT, n = 6 high-grade CS) cohorts, respectively, based on the date of surgery. At centre 2, the dataset constituted the external test cohort (n = 12 ACT, n = 18 high-grade CS). Manual segmentation was performed on frontal view X-rays, using MRI or CT for preliminary identification of lesion margins. After image pre-processing, radiomic features were extracted. Dimensionality reduction included stability, coefficient of variation, and mutual information analyses. In the training cohort, after class balancing, a machine learning classifier (Support Vector Machine) was automatically tuned using nested 10-fold cross-validation. Then, it was tested on both the test cohorts and compared to two musculoskeletal radiologists' performance using McNemar's test.Findings
Five radiomic features (3 morphology, 2 texture) passed dimensionality reduction. After tuning on the training cohort (AUC = 0.75), the classifier had 80%, 83%, 79% and 80%, 89%, 67% accuracy, sensitivity, and specificity in the internal (temporally independent) and external (geographically independent) test cohorts, respectively, with no difference compared to the radiologists (p ≥ 0.617).Interpretation
X-rays radiomics-based machine learning accurately differentiates between ACT and high-grade CS of long bones.Funding
AIRC Investigator Grant.
SUBMITTER: Gitto S
PROVIDER: S-EPMC10884340 | biostudies-literature | 2024 Feb
REPOSITORIES: biostudies-literature
Gitto Salvatore S Annovazzi Alessio A Nulle Kitija K Interlenghi Matteo M Salvatore Christian C Anelli Vincenzo V Baldi Jacopo J Messina Carmelo C Albano Domenico D Di Luca Filippo F Armiraglio Elisabetta E Parafioriti Antonina A Luzzati Alessandro A Biagini Roberto R Castiglioni Isabella I Sconfienza Luca Maria LM
EBioMedicine 20240219
<h4>Background</h4>Atypical cartilaginous tumour (ACT) and high-grade chondrosarcoma (CS) of long bones are respectively managed with active surveillance or curettage and wide resection. Our aim was to determine diagnostic performance of X-rays radiomics-based machine learning for classification of ACT and high-grade CS of long bones.<h4>Methods</h4>This retrospective, IRB-approved study included 150 patients with surgically treated and histology-proven lesions at two tertiary bone sarcoma centr ...[more]