Project description:It is accepted that the ligand shell morphology of nanoparticles coated with a monolayer of molecules can be partly responsible for important properties such as cell membrane penetration and wetting. When binary mixtures of molecules coat a nanoparticle, they can arrange randomly or separate into domains, for example, forming Janus, patchy or striped particles. To date, there is no straightforward method for the determination of such structures. Here we show that a combination of one-dimensional and two-dimensional NMR can be used to determine the ligand shell structure of a series of particles covered with aliphatic and aromatic ligands of varying composition. This approach is a powerful way to determine the ligand shell structure of patchy particles; it has the limitation of needing a whole series of compositions and ligands' combinations with NMR peaks well separated and whose shifts due to the surrounding environment can be large enough.
Project description:Rhodopsin is currently the only available atomic-resolution template for understanding biological functions of the G protein-coupled receptor (GPCR) family. The structural basis for the phenomenal dark state stability of 11-cis-retinal bound to rhodopsin and its ultrafast photoreaction are active topics of research. In particular, the beta-ionone ring of the retinylidene inverse agonist is crucial for the activation mechanism. We analyzed a total of 23 independent, 100 ns all-atom molecular dynamics simulations of rhodopsin embedded in a lipid bilayer in the microcanonical (N,V,E) ensemble. Analysis of intramolecular fluctuations predicts hydrogen-out-of-plane (HOOP) wagging modes of retinal consistent with those found in Raman vibrational spectroscopy. We show that sampling and ergodicity of the ensemble of simulations are crucial for determining the distribution of conformers of retinal bound to rhodopsin. The polyene chain is rigidly locked into a single, twisted conformation, consistent with the function of retinal as an inverse agonist in the dark state. Most surprisingly, the beta-ionone ring is mobile within its binding pocket; interactions are non-specific and the cavity is sufficiently large to enable structural heterogeneity. We find that retinal occupies two distinct conformations in the dark state, contrary to most previous assumptions. The beta-ionone ring can rotate relative to the polyene chain, thereby populating both positively and negatively twisted 6-s-cis enantiomers. This result, while unexpected, strongly agrees with experimental solid-state (2)H NMR spectra. Correlation analysis identifies the residues most critical to controlling mobility of retinal; we find that Trp265 moves away from the ionone ring prior to any conformational transition. Our findings reinforce how molecular dynamics simulations can challenge conventional assumptions for interpreting experimental data, especially where existing models neglect conformational fluctuations.
Project description:The kinetic adsorption profile at the DNA-gold nanoparticle (AuNP) interface is probed by following the binding and organization of thiolated linear DNA and aptamers of varying chain lengths (15, 30, 44, and 51 mer) to the surface of AuNPs (13.0 ± 1.0 nm diameter). A systematic investigation utilizing dynamic light scattering has been performed to directly measure the changes in particle size during the course of a typical aging-salting thiolated DNA/AuNP preparation procedure. We discuss the effect of DNA chain length, composition, salt concentration, and secondary structure on the kinetics and conformation at the DNA-AuNP interface. The adsorption kinetics are chain-length dependent, composition independent, and not diffusion rate limited for the conditions we report here. The kinetic data support a mechanism of stepwise adsorption of thiols to the surface of AuNPs and reorganization of the thiols at the interface. Very interestingly, the kinetic increases of the particle sizes are modeled accurately by the pseudo-second-order rate model, suggesting that DNA could possess the statistically well-defined conformational evolution. Together with other experimental evidence, we propose a dynamic inner-layer and outer-tail (DILOT) model to describe the evolution of the DNA conformation after the initial adsorption of a single oligonucleotide layer. According to this model, the length of the tails that extend from the surface of AuNPs, capable for hybridization or molecular recognition, can be conveniently calculated. Considering the wide applications of DNA/AuNPs, the results should have important implications in sensing and DNA-directed nanoparticle assembly.
Project description:Many economically important biosyntheses incorporate regiospecific and stereospecific oxidations at unactivated carbons. Such oxidations are commonly catalyzed by cytochrome P450 monooxygenases, heme-containing enzymes that activate molecular oxygen while selectively binding and orienting the substrate for reaction. Despite the plethora of P450-catalyzed reactions, the P450 fold is highly conserved, and static structures are often insufficient for characterizing conformational states that contribute to specificity. High-resolution solution nuclear magnetic resonance (NMR) offers insights into dynamic processes and conformational changes that are required of a P450 in order to attain the combination of specificity and efficiency required for these reactions.
Project description:Ostrinia furnacalis is an invasive lepidopteran agricultural pest that relies on olfaction for mating and reproduction. Male moths have an extremely sensitive olfactory system that can detect the sex pheromones emitted by females over a great distance. Pheromone-binding proteins present in the male moth antenna play a key role in the pheromone uptake, transport, and release at the dendritic membrane of the olfactory neuron. Here, we report the first high-resolution NMR structure of a pheromone-binding protein from an Ostrinia species at pH 6.5. The core of the Ostrinia furnacalis PBP2 (OfurPBP2) consists of six helices, α1a (2-14), α1b (16-22), α2 (27-37), α3 (46-60), α4 (70-80), α5 (84-100), and α6 (107-124) surrounding a large hydrophobic pocket. The structure is stabilized by three disulfide bridges, 19-54, 50-108, and 97-117. In contrast to the unstructured C-terminus of other lepidopteran PBPs, the C-terminus of OfurPBP2 folds into an α-helix (α7) at pH 6.5. The protein has nanomolar affinity towards both pheromone isomers. Molecular docking of both pheromones, E-12 and Z-12-tetradecenyl acetate, to OfurPBP2 revealed that the residues Met5, Lys6, Met8, Thr9, Phe12, Phe36, Trp37, Phe76, Ser115, Phe118, Lys119, Ile122, His123, and Ala128 interact with both isomers, while Thr9 formed a hydrogen bond with the acetate head group. NMR structure and thermal unfolding studies with CD suggest that ligand release at pH 4.5 is likely due to the partial unfolding of the protein.
Project description:Exchange dynamics between molecules free in solution and bound to the surface of a large supramolecular structure, a polymer, a membrane or solid support are important in many phenomena in biology and materials science. Here we present a novel and generally applicable solution NMR technique, known as dark-state exchange saturation transfer (DEST), to probe such exchange phenomena with atomic resolution. This is illustrated by the exchange reaction between amyloid-β (Aβ) monomers and polydisperse, NMR-invisible ('dark') protofibrils, a process of significant interest because the accumulation of toxic, aggregated forms of Aβ, from small oligomers to very large assemblies, has been implicated in the aetiology of Alzheimer's disease. The (15)N-DEST experiment imprints with single-residue-resolution dynamic information on the protofibril-bound species in the form of (15)N transverse relaxation rates ((15)N-R(2)) and exchange kinetics between monomers and protofibrils onto the easily observed two-dimensional (1)H-(15)N correlation spectrum of the monomer. The exchanging species on the protofibril surface comprise an ensemble of sparsely populated states where each residue is either tethered to (through other residues) or in direct contact with the surface. The first eight residues exist predominantly in a mobile tethered state, whereas the largely hydrophobic central region and part of the carboxy (C)-terminal hydrophobic region are in direct contact with the protofibril surface for a significant proportion of the time. The C-terminal residues of both Aβ40 and Aβ42 display lower affinity for the protofibril surface, indicating that they are likely to be surface exposed rather than buried as in structures of Aβ fibrils, and might therefore comprise the critical nucleus for fibril formation. The values, however, are significantly larger for the C-terminal residues of Aβ42 than Aβ40, which might explain the former's higher propensity for rapid aggregation and fibril formation.
Project description:Transcriptome analysis based on total RNA-seq was performed on different Haloferax volcanii strains including mutants strains iincluding deletion strains for two small proteins. Differential expression analysis showed that a subset of genes were found to be regulated in the absence of the small proteins.
Project description:The kinetic and thermodynamic ligand exchange dynamics are important considerations in the rational design of metal-based therapeutics and therefore, require detailed investigation. Co(III) Schiff base complex derivatives of bis(acetylacetone)ethylenediimine [acacen] have been found to be potent enzyme and transcription factor inhibitors. These complexes undergo solution exchange of labile axial ligands. Upon dissociation, Co(III) irreversibly interacts with specific histidine residues of a protein, and consequently alters structure and causes inhibition. To guide the rational design of next generation agents, understanding the mechanism and dynamics of the ligand exchange process is essential. To investigate the lability, pH stability, and axial ligand exchange of these complexes in the absence of proteins, the pD- and temperature-dependent axial ligand substitution dynamics of a series of N-heterocyclic [Co(acacen)(X)(2)](+) complexes [where X = 2-methylimidazole (2MeIm), 4-methylimidazole (4MeIm), ammine (NH(3)), N-methylimidazole (NMeIm), and pyridine (Py)] were characterized by NMR spectroscopy. The pD stability was shown to be closely related to the nature of the axial ligand with the following trend toward aquation: 2MeIm > NH(3) ≫ 4MeIm > Py > Im > NMeIm. Reaction of each [Co(III)(acacen)(X)(2)](+) derivative with 4MeIm showed formation of a mixed ligand Co(III) intermediate via a dissociative ligand exchange mechanism. The stability of the mixed ligand adduct was directly correlated to the pD-dependent stability of the starting Co(III) Schiff base with respect to [Co(acacen)(4MeIm)(2)](+). Crystal structure analysis of the [Co(acacen)(X)(2)](+) derivatives confirmed the trends in stability observed by NMR spectroscopy. Bond distances between the Co(III) and the axial nitrogen atoms were longest in the 2MeIm derivative as a result of distortion in the planar tetradentate ligand, and this was directly correlated to axial ligand lability and propensity toward exchange.
Project description:DNA metabolism and processing frequently require transient or metastable DNA conformations that are biologically important but challenging to characterize. We use gold nanocrystal labels combined with small angle X-ray scattering to develop, test, and apply a method to follow DNA conformations acting in the Escherichia coli mismatch repair (MMR) system in solution. We developed a neutral PEG linker that allowed gold-labeled DNAs to be flash-cooled and stored without degradation in sample quality. The 1,000-fold increased gold nanocrystal scattering vs. DNA enabled investigations at much lower concentrations than otherwise possible to avoid concentration-dependent tetramerization of the MMR initiation enzyme MutS. We analyzed the correlation scattering functions for the nanocrystals to provide higher resolution interparticle distributions not convoluted by the intraparticle distribution. We determined that mispair-containing DNAs were bent more by MutS than complementary sequence DNA (csDNA), did not promote tetramer formation, and allowed MutS conversion to a sliding clamp conformation that eliminated the DNA bends. Addition of second protein responder MutL did not stabilize the MutS-bent forms of DNA. Thus, DNA distortion is only involved at the earliest mispair recognition steps of MMR: MutL does not trap bent DNA conformations, suggesting migrating MutL or MutS/MutL complexes as a conserved feature of MMR. The results promote a mechanism of mismatch DNA bending followed by straightening in initial MutS and MutL responses in MMR. We demonstrate that small angle X-ray scattering with gold labels is an enabling method to examine protein-induced DNA distortions key to the DNA repair, replication, transcription, and packaging.